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Errata for A Framework for Improving the Cost-Effectiveness of DSM Program
Evaluations  LBL-37158

On page 70, Table 5-5 lists costs for 500 sites, not 250 as stated in the text.

On page 84, Table 6-6 should read as follows:

Table 6-6. Cost of Conserved Energy for a Hypothetical Commercial
Lighting Program

Bottom- Mean Median Standard 80%

Up (¢/kWh) (¢/kWh) Deviation Prediction
Precision Interval
Poor 4.8 4.0 + 44, —
Average 4.4 4.0 =1.6 +60%

Good 4.1 4.0 +0.67 +27%
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Abstract

The prudence of utility demand-side management (DSM) investments hinges on their
performance, yet evaluating performance is complicated because the energy saved by
DSM programs can never be observed directly but only inferred. This study frames and
begins to answer the following questions: (1) How well do current evaluation methods
perform in improving our confidence in the measurement of energy savings produced by
DSM programs? (2) In view of this performance, how can we best allocate limited
evaluation resources to maximize the value of the information they provide. We review
three major classes of methods for estimating annual energy savings: tracking database
(sometimes called engineering estimates), end-use metering, and billing analysis and
examine them in light of the uncertainties in current estimates of DSM program measure
lifetimes. We assess the accuracy and precision of each method and construct trade-off
curves to examine the costs of increases in accuracy or precision. We demonstrate
several approaches for improving evaluations for the purpose of assessing program cost
effectiveness. The methods can be easily generalized to other evaluation objectives,
such as shared savings incentive payments.
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Executive Summary

Executive Summary

American utilities spent nearly three billion dollars on demand-side management
(DSM) programs in 1994.! The prudence of these investments hinges on their
performance, yet evaluating performance is complicated because the energy saved
by DSM programs can never be observed directly but only inferred. Utilities
currently rely on a variety of methods, drawn from a variety of academic
disciplines, including engineering, statistics, social psychology, and economics.
Given the relative newness of utility DSM programs, it is not surprising that no
consensus has emerged on a single best evaluation method. There are significant
unanswered questions regarding how much evaluation, and what types, are
appropriate in view of the expected benefits and costs of the programs.

The objective of our study is to frame and begin to answer the following questions:
(1) How well do current evaluation methods perform in improving our confidence
in the measurement of energy savings produced by DSM programs? (2) In view of
this performance, how can we best allocate limited evaluation resources to
maximize the value of the information they provide? We approach the subject
humbly and do not presume that there is a single best method for conducting a
DSM evaluation; we acknowledge that all evaluation methods provide some
information. The quantity and types of information one needs depend on the
intended use of the evaluation results. Therefore, how much one should spend
acquiring DSM "evaluation information depends on how much the information is
worth.

Our study examines current practices in the evaluation of DSM programs that
target lighting in the commercial sector, both because of their significance as major
elements of most utility’s DSM program portfolios and because they have been the
subject of extensive evaluations. We examine different evaluation methods from
the particular objective of improving our knowledge regarding the cost
effectiveness of these programs. Establishing cost effectiveness is not the only
objective of an evaluation; establishing shareholder incentives paid to a utility for
running a DSM program is another. The methods we develop are general and can
be readily extended to these and other evaluation objectives.

Although ours is not the first study to recognize that the value of information and
the cost of acquiring it should be important inputs into decisions about evaluation
methods, we believe ours is the first comprehensive application of this insight to
the practice of DSM program evaluations. Moreover, in developing the
information required to allocate evaluation resources cost-effectively, we have
uncovered substantial new information on the strengths and limitations of current
evaluation methods.

! EIA. “Annual Energy Outlook 1994.” Energy Information Administration, Washington, 1994.




Executive Summary

EX.1 The Performance of Current DSM Program Evaluation Methods

A major contribution of our study is a detailed assessment of the performance of
current evaluation methods. We reviewed three major approaches for estimating
annual energy savings: tracking database (sometimes called engineering estimates),
end-use metering, and billing analysis. We also examined current estimates of
DSM program measure lifetimes. The objective of our assessment was two-fold:
First, we attempted to systematically characterize what is known about the
accuracy and precision of current methods, based on reviews of recent evaluation
studies and on our own analyses. Second, we constructed “trade-off” curves to
examine the costs of increases in accuracy or precision. What follows is a
summary of key findings on the performance of these methods.

EX.1.1 Tracking Database Estimates of Savings

Although “engineering estimate” is traditionally defined as a method that does not
rely on measured consumption data (such as load metering or bills), we believe the
term does not adequately describe the range of current methods. Moreover, the
pejorative implications of the term are inappropriate given the often substantial
after-the-fact performance data, such as site inspections and spot metering, that are
routinely incorporated by these approaches.

Figure EX-1. Comparison of Accuracy and Precision of Tracking Database Estimates of
Savings. Realization rates for individual components of savings (number of measures,
hours of operation, changes in installed capacity or delta kW) from tracking databases
and site inspections are compared to more accurate end-use metering estimates of the
same quantities.
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Executive Summary

Nevertheless, for a small sample of studies in which we could directly compare
tracking database estimates of savings to end-use metering, we found considerable
variation in bias and precision (see Figure EX-1). Because ‘an evaluator, without
additional evaluation information, has no means of estimating' the bias and
precision of his/her tracking database estimate, we conclude that tracking database
estimates alone are not reliable. Among the computational elements used in
tracking databases (i.e., number installed, change in load per measure, and hours of
operation), we found hours of operation were the largest contributor to bias and
imprecision in annual savings estimates. If future studies with a larger sample of
programs can confirm these findings, it would suggest additional attention should
be given to inexpensive and accurate methods for improving estimates of hours of
operation.

EX.1.2End-Use Metering Estimates of Savings

Although end-use metering offers the promise of being the most accurate method
for estimating lighting energy savings,” we find that contemporary end-use
metering studies are often limited. These limitations stem ultimately from the high
cost of end-use metering, which, because of its cost, is generally implemented for
only a subset of program participants, for a subset of affected circuits, and for only
a few weeks at a time. Clearly, rationing these high costs to maximize the value of
the information produced by this method is an important evaluation objective.

The imprecision of limited-duration metering and the effects of HVAC/lighting
interactions were not addressed in the majority of studies we reviewed. We
estimate that these uncertainties reduce the precision of end-use metering estimates
by approximately 20%. This reduction could be tempered by: (1) longer-duration
metering, or, (2) a better understanding of interaction effects coupled with detailed
information about each customer’s HVAC system.

Our sample of office building lighting hours of operation data suggests that hours
vary seasonally. On average, hours of operation are half an hour longer in the
winter and half an hour shorter in the summer than during the shoulder months.
Neglecting to account for the season in which metering is performed couid bias the
estimate of hours of operation and the resulting estimate of annual savings.

HVAC/lighting interaction effects increase program electricity savings for most
non-electrically-heated office buildings. Omitting this effect from consideration
can result in a 5-15% downward bias in annual savings estimates, depending on the
climate and particular HVAC equipment used.

Small sample metering studies depend heavily on the representativeness of the
metered sample. Most evaluators already stratify the population to select a
representative sample of participants and then select representative equipment
within each facility. Detailed metering results from evaluations would allow an

? It can potentially be most accurate because it measures a quantity that most closely resembles actual energy savings:
the actual consumption of individual pieces of equipment before and after a efficiency-enhancing retrofit.

ass
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assessment of differences in equipment operation across participants, facility types,
and facility zones. Until such detailed reporting is commonplace, which will enable
analyses of equipment operating differences to be performed, the
representativeness of current metered samples will remain uncertain.

EX.1.3 Billing Analysis

Regression-based analyses of customer billing information are perhaps the most
widely used post-program evaluation method. We examined a range of methods
using a simulated data set of 500 buildings where we could precisely control the
level of savings, influence of weather, and changes in building hours of operation.
In evaluating the popular Statistically Adjusted Engineering or SAE model, which
introduces site-specific engineering estimates of savings, we confirmed the
magnitude of a widely-recognized but underappreciated limitation of the method,
namely, that its reliability depends strongly on the quality of the initial engineering
estimate of savings (see Figure EX-2). Based on our earlier findings regarding
typical levels of imprecision and bias in these estimates, we found that the SAE
model did not perform as well as simpler time-series regression methods. We
believe this is a major finding and, if confirmed by subsequent application of our
methods to a wider range of situations, represents a particularly sobering
conclusion for the evaluation community.

Figure EX-2. SAE Model Realization Rate Bias Dependent on Engineering Estimates. The
realization rate for an SAE model depends on both the accuracy and precision of the
underlying engineering estimate of savings. Even a completely unbiased estimate leads

to an erroneous realization rate of less than 1.0 when the standard deviation of the
estimate is greater than, say, 0.25 (see upper curve).
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We also found that inclusion of comparison groups in time-series regression can
greatly improve the precision of annual savings estimates, at moderate costs.
‘When the DSM program reduces customer consumption by a small amount (4% in
our simulation), incorporating nonparticipant data improves the precision of
savings estimates by a factor of three. For programs that save a larger proportion
of customer electricity consumption, the improvement is smaller but still

significant.
Table EX-1. Summary of Annual Savings Evaluation Methods Examined.
Method To Effects Treated/ Primary Accuracy Potential Bias In Potential
Estimate Accounted For Limitations Annual Savings imprecision In
Annual Estimate Annual Savings
Savings Estimate
Tracking Baseline equipment, | Over/underestimation | Precision not
database usage patterns, of baseline and estimated
(engineering equipment program equipment
estimate) installations not efficiencies, hours of
verified, efficiencies operation
from mfr.
Specifications,
requires gross
assumptions
regarding consistent
customer behavior
Site Baseline equipment | Still simplifies Over/underestimation | Precision not
inspection (with pre-installation | equipment usage of operating hours or estimated
inspections) and pattemns, does not equipment efficiencies
efficient equipment | verify equipment by auditors/ in
specification errors | energy consumption | customer surveys
in tracking at customer sites
database, hours of
operation (from
auditor/ customer ;
survey)
End-use Variations in Metered sample may | Seasonal variations in { Limited duration
metering equipment usage, not accurately equipment usage, metering,
baseline usage (if represent population, | hvac/lighting extrapolation
pre/post metering) metering of limited interaction effects, from sample to
time duration, no unrepresentative population
comparison group sample of
customers/equipment/
building zones
metered
Customer Changes in Provides little Non-normality of Improper model
bill-based equipment usage, understanding of data/error term, specification,
econometric | changes in weather, | program strengths/ improper model inadequate
models changes in baseline | weaknesses or specification, improper | variability in
energy use (with justification for its comparison group, data, low
comparison group) savings estimate, inadequate variability | signal/noise
requires one year of in data, low ratio
post-program data signal/noise ratio
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EX.1.4 From Annual Savings to Lifetime Savings: Economic Measure Lifetime and Its
Influence on the Cost of Conserved Energy

The value of DSM programs depends on both annual savings and the economic
lifetime of the measures. We caution that the current practice of simply estimating
equipment measure lifetimes based on expert judgment may be highly unreliable. |

We demonstrate that measure lifetimes represent a significant source of uncertainty
for estimates of energy savings (see Table EX-2). The importance of uncertainties
in measure lifetime for the cost of energy savings depends on the effect size, and
the method chosen to estimate annual energy savings. With the exception of
methods involving time-series analyses of a small effect size, measure lifetime is
the dominant contributor to uncertainty (i.e., the rank correlation for measure
lifetime is greater than that for annual savings). In every case, the contribution of
measure lifetime to uncertainty is comparable to that of the annual savings
estimates. :

Table EX- 2. Importance of Uncertainty in Cost of Conserved Energy Inputs.

Rank Correlations (1 indicates
maximum importance)

Top-Down Method Effect Size Annual Savings  Measure Lifetime
(savings per Estimate
participant) :
Time-Series . Small 0.88 0.49
Medium 0.61 0.74
Large 0.46 0.87
Time-Series Cross Small 0.50 0.82
Section Medium 0.39 ‘ 0.90
Large 0.37 0.92
Time-Series Cross Small 0.44 0.90
Section w/Lagged Medium - 0.23 0.98
Dependent Variable  Large, ‘ 0.22 0.99

A comparison of the results of recent equipment lifetime studies (we located only
two complete studies) with measure lifetime estimates from evaluations of 20
commercial lighting DSM programs suggests that the lifetime estimates commonly
used today by utilities could be biased upwards, resulting in estimates of the cost
of conserved energy that are biased downwards. Now that DSM is maturing as an
energy resource, it is time for additional studies that verify, through surveys of
participants, estimates of measure lifetime.

EX.2 Efficient Allocation of Evaluation Resources

Our objective in examining the performance of current evaluation methods is to
offer recommendations on how to improve the current practice of conducting
evaluations by explicitly recognizing the tradeoffs involved in evaluation method
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performance, costs, and the value of evaluation information. We demonstrate
several approaches from the particular evaluation objective of assessing program
cost effectiveness. Our methods can be easily generalized to other evaluation
objectives, such as shared savings incentive payments.

We begin by comparing the likely impact of improved evaluation methods on the
cost-effectiveness findings for 20 recent commercial lighting programs. We find
relative precisions in the range of 90/50 (£50% at a 90% confidence interval) are
sufficient to confirm the cost effectiveness of the majority of programs from this
sample of 20. Table EX-3 illustrates, for differing initial levels of program cost
effectiveness, the effects of different levels of evaluation method precision on
ultimate program cost effectiveness. Confidence that programs are cost effective
decreases as the initial TRC ratio approaches 1.0 and as evaluation method
precision decreases. Thus, we conclude that the 90/10 precision standard often
required of evaluations may only rarely be cost-justified from the standpoint of
confirming program cost effectiveness.

Table EX-3. Fraction of Distributions Representing Non-Cost-Effective Programs.

Mean TRC | Savings Estimation Precision Percent of
Test Ratio Method Distribution Less
Than 1.0
Low End-Use Metering Low (=50%) 40%
(1.1) Medium (25%) 29%
High (10%) 11%
Econometric Low (15%) 19%
Medium (10%) 11%
High (5%) 3%
" Medium End-Use Metering Low 7%
(1.8) Medium —
High —
Econometric Low —
Medium —
High —
High End-Use Metering Low 1%
(4.2) Medium —
High —_
Econometric Low —
Medium —
High —

However, biases in measure lifetime estimates can dlso cause misstatements of cost
effectiveness. Coupling such biases with imprecise estimates of measure costs and
annual energy savings can further decrease evaluator confidence in program cost
effectiveness. The biases we identify in current practice of calculating annual
savings and measure lifetime estimation are sufficient to mislabel non-cost-effective
programs as cost effective, even when estimated Total Resource Cost Ratios are as
high as 2.0. Unfortunately, although we can the identify sources and likely
magnitudes of bias in current methods, we cannot offer definitive guidance on the
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bias likely to be present in any particular application of methods. A notable
exception is our earlier characterization of the bias introduced by the SAE method
in the presence of bias and imprecision in initial engineering estimates of savings.

Finally, we consider the issue of evaluation resource allocation directly. For a
decision to continue funding a program based on cost effectiveness, this requires:
(1) a subjective estimate of the chances that the program is actually not cost-
effective, in the face of any evaluation results, and (2) an estimate of the resources
that could be misallocated to the program in the following year. We represent the
decision to fund as being based on (a) ‘a mean evaluation estimate of cost
effectiveness, or (b) an estimate of cost effectiveness that includes imprecision.
The difference between (a) and (b) is the value of including uncertainty in the
program screening decision. The product of (1) and (2) is the expected value of
future misallocated resources. The results for a hypothetical program, with value
expressed as a percentage of total program cost, are plotted in Figure EX-3.

Figure EX-3. Expected value of including uncertainty: TRC estimates in the low (mean
total resource cost ratio =1.1) range.

Net Benefit
(as a % of
program
cost)
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EX.3.

The value of including a measure of evaluation imprecision depends on the mean
estimate of cost effectiveness and its bias and imprecision. When the imprecision
is zero, there is no [intuitive] value in considering an estimate of imprecision. As
imprecision increases, but more importantly as bias increases, the value of taking
imprecision into account increases. Our analysis leads us to conclude that taking
estimate imprecision into account can mitigate the effects of estimate bias and
imprecision, when evaluation information is used to screen ongoing DSM
programs. Moreover, including imprecision in program screening decision making
is more valuable when mean program cost-effectiveness ratios are close to one.

Concluding Thoughts

The introduction of competitive forces in the industry is creating substantial
pressures for utilities to control costs. Formal decision-analytic approaches to
ration DSM program evaluation resources offer the potential to guide cost control
decisions in a systematic and defensible fashion that maximizes the value of
evaluation expenditures. Application of these approaches, however, requires
detailed information on the performance of evaluation methods. This information
is not yet widely available. Hence, we recommend increased effort by future
evaluation efforts to report intermediate findings, especially on precision, so that a
more comprehensive and reliable base of information upon which to ground these
decisions can be developed.
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Introduction ahd Overview

American utilities spent nearly three billion dollars on demand-side management
(DSM) programs in 1994.! The prudence of these investments hinges on their
performance, yet evaluating performance is complicated because the energy saved by
DSM programs can never be observed directly, but only inferred. Given the relative
newness of utility DSM programs, it is unsurprising that consensus has not emerged
on a single best evaluation method. Utilities currently rely on a variety of methods,
which in turn are drawn from a variety of academic disciplines, including engineering,
statistics, social psychology, and economics. There are significant unanswered
questions of how much evaluation, and what types, are appropriate in view of the
expected benefits and costs of the programs.

The objective of our study is to frame and begin to answer the following questions:
(1) How well do current evaluation methods perform in improving our confidence in
the energy savings produced by DSM programs? (2) In view of this performance, how
can we best allocate limited evaluation resources to maximize the value of the
information they provide? We approach the subject humbly in that we do not presume
there is a single best method for conducting a DSM evaluation. Instead, we start by
acknowledging that all evaluation methods provide some form of information. The
quantity and types of information one needs depends on the intended purpose of the
evaluation result. Therefore, how much one should spend acquiring this information
depends on how much the information is worth, in view of the cost of obtaining it.

Our study examines current practices in the evaluation of commercial sector lighting
energy efficiency DSM rebate programs, both in view of their significance as major
elements of most utility’s DSM program portfolios and because, as a result, they have
been the subject of extensive evaluations. We examine the value of different
evaluation methods from the particular objective of improving our knowledge
regarding the cost-effectiveness of these programs. This, of course, is not the only
objective of an evaluation; establishing shareholder incentives paid to a utility for
running a DSM program is another. The methods we develop are general in nature
and can be readily extended to consider this and other objectives.

While the method is general, it is important to recognize the constraints we have
placed on the scope of our investigation. As indicated, we apply our methods to a
study of only one particular, albeit popular, type of DSM program, namely, those that
offer rebates to commercial sector customers to retrofit or replace existing lighting
systems. For these programs, we are concerned only with methods for estimating the
direct annual energy savings attributable to them. We do not examine evaluation
methods that attempt to" measure the level of free-ridership or spillover from these

I EIA. “Annual Energy Outlook 1994”. Energy Information Administration, Washington, 1994.
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1.1.

programs. Finally, while we explicitly examine the uncertainty in estimates of energy
savings, we do not consider uncertainty in the cost of these programs or in the
estimates of the utility supply costs avoided by these programs.

The remainder of this chapter motivates our study. First, we expand the above
conception of the DSM program evaluation problem, which illustrates the notion of
trading-off the cost of conducting one or another evaluation method against the
anticipated benefits associated with each method. Next, we identify a particular set of
very important evaluation objectives as one basis for making these trade-offs: the cost
of conserved energy, and the related, total resource cost net benefit of DSM programs.
We then differentiate between bias and precision, which are two interrelated, yet very
distinct features of evaluation results. We then describe a particular type of DSM
program, commercial sector, lighting energy efficiency rebate programs, which we use
to illustrate these trade-offs. These programs are of special interest because they often
account for the largest part of a utility’s DSM program portfolio (and, consequently,
evaluation spending). Finally, we provide a detailed overview of the following
chapters of the report.

Integrating Cost Information with Bias and Precision of Methods

The basic premise of our study is that a comparison of evaluation methods is of little
practical use unless the costs of the evaluation methods are also compared.
Integration of cost information with evaluation method results allows trade-offs
between cost and the bias/precision of each method. In theory, one could construct a
curve which explicitly described the tradeoff between evaluation cost and
bias/precision, with each evaluation method represented by a point (or a range) on the
curve. A sample of such a graph is given in Figure 1-1. If one also had a measure of
the value of increases in bias/precision, then one could decide not only which
evaluation method to choose (i.e., which curve to be on), but also at which point on
the curve the difference between cost and value is maximized. -

. Each curve represents a group of similar evaluation methods (for example, similar

methods which incorporate data which is more accurate but increasingly more
expensive to collect). For a given level of accuracy, several methods may be available
to provide similar results at different costs, as indicated in Figure 1-1 by line C. As
increased unbiasedness or precision is required, evaluation methods with gentle curves
would be favored over ones with steeper curves. In order to precisely determine the
appropriate level of evaluation, information on the use of the resulting savings
estimates and requirements for bias and precision must also be incorporated into the
analysis. These are represented hypothetically as a value curve, which decreases in
marginal value as bias or precision is increased. The optimal level of evaluation is
found at the point where the distance between the two curves (and the net benefit of

- evaluation) is maximized, as indicated in Figure 1-1 by line D.
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Figure 1-1. Hypothetical cost vs. accuracy curves
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1.2.

Value of Evaluation Result

Method A

Evaluation Accuracy/Precision

Evaluation Objective: The Cost of Conserved Energy

DSM program evaluations provide valuable information regarding program
administration, management, costs, and benefits. The appropriate evaluation
technique is dependent on the evaluation objective. Appendix A provides a summary
of the most often cited objectives of DSM program evaluation, and the evaluation
requirements of each objective.

This study focuses on assessing the ability of evaluation to provide accurate and
precise estimates of the kilowatt-hour savings of DSM programs and resulting costs to
society and to the utility. We express the program cost to society using the Cost of
Conserved Energy (CCE) as a metric. The CCE can be used to express the levelized
cost (over the life of program equipment) of a DSM program per kilowatt-hour of
program savings attained. The equation for calculating the CCE is:

i(1+:)"

A+i)" -1
Annual Savings

Program Cost x
Cost of Conserved Energy (¢/ kWh)=

Using a capital recovery factor with discount rate , the term in the numerator levelizes
the total program cost over the number of years » the program equipment is expected
to operate. Because the CCE allows one to compare results of DSM programs with
different costs, savings, and lifetimes, and because it enables the comparison of DSM
programs with supply-side options in an integrated resource plan, the CCE is a
quantity of interest to utilities, regulators, and DSM program planners. To evaluate
cost effectiveness, the cost of conserved energy is often compared to the supply-side
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costs DSM programs allow the utility to avoid. The ratio (known as the total resource
cost ratio) of avoided costs to the cost of conserved energy provides one metric of a
program’s cost effectiveness: programs with a ratio greater than one are considered
cost-effective. 2

Assessing evaluation methods: Bias and Precision

We use two different metrics to assess how well evaluation methods reveal a
program’s actual energy savings: bias and precision. A biased estimate systematically
deviates from the true value, under or over estimating savings. For example, if a
method consistently overestimated actual savings by 20%, that method would be
considered biased. -

The issue of precision is more esoteric. Many program evaluations omit all discussion
of estimate precision, and report savings estimates as single values. But because of the
difficulties associated with calculating program savings, any estimate of program
savings is subject to some uncertainty. It is this uncertainty that one attempts to
encapsulate in an expression of precision. An estimate which omits an estimate of
precision is incomplete and can be misleading. For example, an estimate of annual
savings of 5,000 kilowatt-hours (kWh) with a standard deviation of +300 kWh is very
different from an estimate of 5,000 % 3,000 kWh. The latter estimate is of less use as a
gauge of program savings, because it suggests that the actual savings could be
considerably above or below the mean estimate of 5,000 kWh, while the former
estimate is more precise, satisfying what is known as a 90/10 criterion; +10% relative
precision at a 90% confidence interval. Thus, figures reported without an estimate of
that uncertainty are not as informative as those which include an estimate of
uncertainty. '

It is important to consider the relative importance of precision and bias. A precise but
biased estimate is worth little, unless the magnitude of the bias is known. On the other
hand, an unbiased but imprecise estimate can still be useful because, on average, it
provides the correct value. Figure 1-2 illustrates the relationship between bias and
precision.

2 When the cost of the program to only the utility, and not society, is included, the ratio is called the utility cost test

ratio.
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Figure 1-2. Bias and precision in savings estimates
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Biased, i.e., under- or over-estimates of savings, have important implications on
several levels: For the utility, biased estimates of savings misinform about program
cost-effectiveness. Biased over-estimates of savings may cause utilities to retain DSM
programs which are not, in reality, cost effective. At the state regulatory level,
overestimates of savings will result in utility overcompensation for lost revenues (for
lost revenues which, in fact, were never lost) and allowed recovery of excessive shared
savings incentives. Thus, the utility is allowed to collect additional, unjustified revenue
from ratepayers. At the national level, plans to reduce national dependence on fossil
fuels or reduce power plant emissions using DSM activities may fall short of desired
goals if plans are based on studies which exaggerate potential savings.

An imprecise estimate of savings has some slightly different implications: Imprecision
in annual savings or measure lifetimes can affect the mean cost of conserved energy
estimate, because of the asymmetric nature of the cost of conserved energy
distribution. (As will be shown in Chapter 6, however, the imprecision must be very
large in order to significantly bias savings estimates.) Most of the concern regarding
precision involves a fundamental desire for a precise estimate, but this desire is not
necessarily based in the requirements of any particular use of the estimate. Regulatory
agencies in California, among other states, require that precision of evaluation study
results strive to reach 90/10 (or 80/20) criteria: evaluations should strive to attain
+]10% relative precision using a 90% confidence interval (or +20 relative precision
using an 80% confidence interval).3

3 Hanser, P., Violette, D., “DSM program evaluation precision: What can you expect? What do you want?”,
Proceedings of NARUC's 4th annual national conference on IRP, pp. 299-313, 1992.
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In most cases the 90/10 criteria is applied to estimates of annual savings, without a
similarly rigorous criteria being required for lifetime savings or for the resulting
estimates of the cost of conserved energy. We demonstrate the difficulty of meeting a
90/10 criteria for the cost of conserved energy, which is usually of more importance to
regulators than the annual savings estimate itself. We also show that in many cases
such a criteria may be excessive because the cost-effectiveness of the program is
assured at a much lower level of precision.

In this report, we use simulation techniques and data from past programs and
evaluations to explore the extent of current methods’ biases. For those methods
where there is currently insufficient information to assess bias, we outline a framework
which could be implemented with additional evaluation information. We also assess
the precision associated with annual savings estimates obtained with different
evaluation methods, and with the resulting cost of conserved energy estimates.

Focus on Commercial Buildings and Efficient Lighting

Rather than attempt to describe appropriate evaluation methods for all types of
demand-side management programs, this report focuses on efficient lighting retrofits in
commercial buildings. The analytic approach we use can be used to assess the
evaluation methods for other sectors (residential, agricultural, and industrial), and for
other efficient equipment types (heating/cooling equipment, process improvements,
water heating, etc.). However, we have chosen to focus on commercial lighting
because of the pervasiveness of utility sponsored commercial lighting programs, and
the magnitude of electricity consumed by commercial lighting applications. The
commercial building sector is responsible for about 10% of U.S. energy consumption.
Interior lighting is an important use of energy in commercial buildings, representing
40% of electricity use and 15% of total energy use in the commercial sector. Interior
lighting is also widely believed to be among the most cost-effective conservation
opportunities- available. ~Studies on the theoretical potential (sometimes called
technical potential) for energy conservation have estimated that an additional 40-70%
of lighting energy use could be cost-effectively saved in the commercial sector. In
response to these studies, the vast majority of utilities engaged in DSM activities

‘include programs which promote use of efficient lighting equipment in commercial

buildings.6

4 EIA. “Commercial Buildings Energy Consumption and Expenditures 1989”. Energy Information Administration,

Washington, 1992.

5 EIA. “Annual Energy Outlook 1994”. Energy Information Administration, Washington, 1994.

6 Eto, J., Vine, E., Shown, L., Sonnenblick,, R., Payne, C., “The Cost and Performance of Utility Commercial

Lighting Programs”, Lawrence Berkeley Laboratory, Berkeley, CA, LBL-34967, May 1994,
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Summary of Report Organization

This report consists of seven chapters following this introduction and three
appendices. A diagram of the report analysis is shown in Figure 1-3.

Chapter Two contains a detailed description of the evaluation methods examined in
this report. It is based on a recent examination of evaluation methods used to estimate
savings for twenty commercial lighting programs. The chapter uses the examination to
develop formal expressions for each individual savings evaluation method. We
distinguish between bottom-up and top-down evaluation methods. Bottom-up
evaluation methods calculate savings from tracking databases (information collected
by the utility on program participants), from participant site-inspections, and from end-
use metering. We call these methods ‘bottom-up’ because they estimate, collect and
measure consumption information at the individual equipment level, and require
extrapolation and/or aggregation to construct site and program-wide savings
estimates. We call methods which rely on customer billing data and econometric
models ‘top-down’ methods because they examine monthly or annual consumption
data, the most aggregate form of customer consumption data, and infer savings from
comparatively smaller (compared to the size of the bills) but systematic changes in
participant consumption patterns. We also summarize the limitations of the different
evaluations which we quantitatively investigate in subsequent chapters. For those
well-versed in current DSM practice, this chapter may be skipped.

The assessment of bottom-up evaluation methods is conducted in two separate
chapters. Chapter Three uses end-use metering data from a handful of studies where
highly disaggregated data were reported to evaluate the accuracy of savings estimates
developed from tracking database estimates of savings and site inspection estimates of
savings. We also describe a research plan to systematically assess bias and precision of
tracking database and site inspection estimates of savings, as the data become
available.

In Chapter Four, we use disaggregate long and short term metered data to assess bias
and precision of end-use metering estimates of annual savings. To estimate the
uncertainty of metered results, we incorporate data on changes in hours of operation
over time, and differences in hours of operation across different areas of a building.
These data provide us with enough information to discuss the potential error in shorter
duration metering studies, and in studies where a sample unrepresentative of the
participant population is selected. We combine our estimates of method bias and
precision with information on data collection and analysis costs.
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Figure 1-3. Overview of Research Plan
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In Chapter Five, we examine top-down evaluation methods, which rely upon premise-
level energy consumption data. In order to assess the performance of these methods,
we construct a set of 250 ‘participant’ and 250 ‘nonparticipant’ commercial buildings,
based on building construction data from EIA and several utilities. We then use DOE-
2 to generate estimates of monthly energy consumption for these buildings for a year
prior to, and a year after, implementation of a lighting retrofit. We apply the top-
down evaluation methods to this monthly consumption data. The results of this
application are combined with information regarding the costs of each method.

In Chapter Six, we combine annual savings estimates with estimates of measure
lifetime, in order to estimate overall program savings. Using Monte Carlo techniques,
we estimate the importance of uncertainty in annual savings, measure lifetime, and free
ridership, and the overall uncertainty of the program savings estimate. Monte Carlo
techniques are also used to estimate the uncertainty in levelized total resource cost.

In Chapter Seven, we describe the results of our analysis of estimate bias, precision,
and the cost of conserved energy. For some programs, increases in savings estimate
precision can dramatically reduce confidence in the cost effectiveness of the program.
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For other programs, increased precision may be unnecessary to conclusively show
cost-effectiveness.

In Chapter Eight, we review the implications of our analyses for future evaluation
activities.

Appendix A contains descriptions of other objectives of DSM program evaluation.
Appendix B contains a detailed description of the data and methods used to simulate
the buildings used to assess the relative bias and precision of the top-down evaluation
methods. In Appendix C, ,we compare the cost, precision, and bias of top-down and
bottom-up methods used to estimate annual program savings. In addition to method
precision and bias, we discuss other important attributes of each method, and discuss
hybrid methods which incorporate several methods in a single framework.




Chapter 1

10




Chapter 2

Overview of Evaluation Methods

Evaluating the effects of a DSM program on energy consumption is a challenging task.
The goal is to measure how much energy would have been consumed by program
participants if the program had not occurred. Because energy savings can only be
deduced and not directly observed, uncovering savings attributable to a program often
utilizes quasi-experimental methods, which utilize information on both program
participants and nonparticipants (a comparison group), both before and after program
implementation. In this chapter we describe bottom-up and top-down evaluation
methods in greater detail. We also describe methods used to estimate the lifetimes of
program . The 20 evaluations scrutinized in a recent LBL report on commercial lighting
rebate programs provide an opportunity to examine the evaluation methods used in the
field to estimate these quantities.!

2.1. Annual Savings Methods

As described in the previous chapter, we classify evaluation methods that estimate annual
program savings into two categories: bottom-up and top-down methods. Other DSM
researchers focus on the distinction between “engineering” and “measured data”
evaluation. We find this distinction misleading because all methods of estimating energy
savings rely on engineering methods to some extent. For example, even end-use metering
relies upon engineering technologies (meters and data loggers). Moreover, measurement
does not necessarily imply that the measured value is reality: as we stated above, energy
savings can only be deduced, not directly observed. Thus, no method elicits the absolute
truth regarding annual program savings.

2.1.1. Examining Bottom-Up Energy Savings Models

For a commercial lighting program, the same basic information is used for all bottom-up
evaluation methods: the number of measures of each type installed per site, each
measure’s kW consumption and the kW consumption of the measures being replaced,
and each measure’s hours of operation. The basic equation for energy savings which
incorporates these terms is:2

. measures Watts Watts
Energy Savings = X

— J X Annual Hours

site measure,, measure,,,

! See Eto, J., Vine, E., Shown, L., Sonnenblick, R., Payne, C., “The Cost and Performance of Utility Commercial
Lighting Programs”, LBL, Berkeley, CA, May 1994, for complete information on the set of evaluations and programs in
this sample. '

2 The equation representing savings from other end uses (e.g., heating, cooling) could be much more complex, involving
non-linear relationships and greater numbers of parameters.
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Bottom-up methods are often divided into three distinct categories: tracking database
estimates (sometimes called engineering estimates) which rely upon utility database
records of equipment installations and manufacturer-estimated efficiencies and equipment
lifetimes; site inspection estimates which employ auditors to verify existence and
operation of measures and adjust tracking database estimates based on interviews with
customers; and end-use metering methods which rely upon measured consumption data
from the efficient equipment installed at customer facilities. However, because these
methods all utilize the same basic savings equations, it is more congruous to think of
bottom up methods as a continuum, with each successive method utilizing more
sophisticated (and costly) techniques to collect increasingly accurate data for the energy
savings equation. A pictorial representation of this continuum is given in Figure 2-1.

Figure 2-1. Continuum of Bottom-Up Methods

Site

Inspection

" Tracking
Database .
Estimates consumption

p Tracking database records of equipment, hours of operation estimates by building type, mfr. estimates of kW

Add hours of operation estimates from customer rebate forms
Add kW consumption of measures being replaced, hours of operation from mkt. survey
Add hours of operation estimates from auditor site surveys

Estimates Add # of measures installed/operating from site surveys

Add kW consumption from spot watt metering at site surveys
Add kW consumption from spot watt metering at site surveys (pre/post program)
b Add hours of operation from lighting loggers

End-Use Add hours of operation from lighting loggers (pre/post program)
Metering
Estimates

Add kWh consumption from end use metering of sample
Add kWh consumption from end use metering of sample (pre/post program)
b Add more sites and/or equipment per site to metered sample

e  Increase metering duration

At the most basic level, simple assumptions are made regarding the hours of operation for
all buildings, and the equipment installed (and its efficiency) prior to the program
intervention. The measures installed at each site are taken from program tracking
database records of participants, often from rebate applications. These estimates are
inexpensive to obtain but will probably not provide precise, unbiased estimates of
savings, because these quantities are not based on actual data from the participating
buildings. : ‘

Augmenting information at the basic level with specific information from surveys of
program participants regarding their hours of operation and pre-program equipment is
more accurate because it incorporates information about the specific participants’ sites.
However, participants’ perception of hours of operation may over- or underestimate
actual hours, and their knowledge of the equipment in place prior to participation may
also be imperfect. In addition, hours of operation may vary for different parts of a facility
in ways that are unbeknownst to the building managers or owners of those facilities.

On-site inspections by utility personnel can provide more consistent, and possibly more
accurate, estimates of pre-program equipment efficiencies. On-site inspections also allow
utility personnel to ask more detailed questions and visually verify the hours of operation
for different areas in a facility. Equipment installed (and still operating) as a result of the
program can also be verified. Visual inspection falls short of the accuracy associated
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with actual measurement, but is considered more accurate than customer self-reports of
operation and equipment description.

On-site inspections can include some measurement, such as instantaneous measurement
of kilowatt loads using spot-watt meters. Other metering equipment can be installed
during on-site surveys, including lighting loggers, which use photocells to measure hours
of operation for lighting equipment, or current transformers connected to data logging
equipment, which can be clamped on to circuits of program equipment to meter kilowatt
loads over time.

The expense of site inspections and metering usually precludes the use of such methods
on every piece of equipment at every participating site. Thus, a sample of sites, and of
equipment at each site, is monitored for a limited period of time. The results are then
extrapolated to the entire population of participants, over the lifetime of the equipment.
The validity of this extrapolation is dependent on the representativeness of the sample
and time-period selected for monitoring. Increasing the sample size (both across sites
and within each site) and the metering duration improves the robustness of the
extrapolation.

With explicit information about the initial uncertainty associated with each component of
the tracking database estimate and information about the improvement in accuracy
associated with each successive point on the continuum, an evaluator could make
explicit, justifiable tradeoffs between the cost of additional data collection and the
resulting anticipated increase in evaluation accuracy and precision.

Characterizing the uncertainty and variability of the various components of the bottom-up
energy savings estimate requires extensive analysis of actual program data. The more
detailed the available data, the more complete the resulting characterization of the
variability in savings estimates at each point in the continuum. The difficulty is that the
highly disaggregated data required to characterize the variability of savings estimates for
each method is scarce. The costs of long term, large scale end-use metering are
prohibitive, and not easily justified based on the evaluation needs of the program at
hand.3 Furthermore, most end use metering studies do not report (or even always keep
on file) the disaggregated, intermediate-level results which one requires to undertake a
characterization of method accuracy.

In the following sections, we discuss the factors which may bias tracking database and
site inspection estimates of AWatts/measure and hours of operation.

2.1.1.1.Baseline Equipment Efficiency and Program Measure Efficiency

The efficiency of both the program equipment and the equipment being replaced is crucial
to the estimate of savings: If equipment being replaced is more efficient than originally
thought, savings will be less than predicted. If new equipment does not perform as well
as expected, savings will also be reduced. '

3 Other reasons for metering, such as gathering customer load data, and verifying demand, as opposed to energy savings,
could help justify the added expense.
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In many evaluations, program planners make rough, back-of-the envelope estimates of
the efficiency of existing equipment in participant facilities. However, estimates of the
efficiency of existing lighting equipment are more accurate when based on some market
or participant data. In San Diego Gas and Electric’s retrofit program, it was originally
assumed that equipment being replaced consisted of standard coil-core ballasts and F40
fluorescent lamps. However, site inspections revealed that approximately 50% of all
ballasts were efficient coil-core ballasts, and 50% of all lamps were F34 watt Miser
lamps. San Diego Gas and Electric revised its savings figures downwards for various
measures by 18% to 48% to reflect more efficient base equipment discovered during site
SUrveys.

Program Equipment can also be less efficient than initially thought. Spot watt metering
by NU found that HID lamps in their retrofit program were 25% less efficient than
originally estimated. NEES found lower than anticipated (85-95% of tracking database
estimates) wattage reductions per measure in their commercial lighting programs. Such
under or over estimates of equipment efficiency can bias subsequent estimates of program
energy savings.

2.1.1.2.Hours of Operation

Tracking database estimates of savings are predicated on consistent use of the equipment.
If equipment is used less than originally assumed, installing efficient versions of that same
equipment will have a smaller than anticipated effect on energy consumption. Most of
the programs that we surveyed required that participants indicate their facilities” hours of
operation on the rebate application or audit form. However, more rigorous methods of
obtaining hours of operation used by many of the programs demonstrated that
participants often over-estimate their own equipment’s hours of operation. Table 2-1
lists the results of hours of operation studies performed by the utilities in our sample.

Table 2-1. Summary of Hours of Use Studies in Sample

Utility Ratio of More . .
. Accurate to Less  Source of First Estimate Source of Second Estimate

Accurate

Estimate .
CMP 0.70 Customer self-reports 189 fixture hours of use

~ metering
BECo 0.73 Customer self-reports On-site inspections of 18
sites
NEES EI 0.78 Customer self-reporis 23 site end-use metering
NEES Smi 1.02 Customer self-reports 21 site end-use metering
Ch during on-site survey
NU 0.81 ‘Customer self-reports 30 site end-use metering
PG&E 0.85 Customer self-reports 90 site end-use metering
SDGE 0.93 Assumptions by building Customer self-reports
type

SDGE 1.18 Customer self-reports 88 site hours of use metering
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Three methods were used by evaluators to obtain hours of operation information. The
most sophisticated evaluations relied on data collected by light-sensitive data loggers
(which record ambient light/darkness) or end-use metering (which record electricity
consumption on lighting circuits) equipment. Less sophisticated evaluations used
program employees to conduct on-site visits and collect information from building
managers and employees. Some programs used mail or telephone surveys to obtain hours
of operation information from participants.

A systematic bias in customer reports of hours of operation is suggested by the data in
our sample. Site inspections, hours of operation metering and end-use metering by CMP,
NEES, and PG&E found recorded hours were less than customer self-reported hours. In
only two cases, NEES’ Small C/I program and SDG&E’s Energy Efficient Hardware
program, did end-use metering uncover that customer self-reports underestimated
equipment operating hours.

Our review also indicates that hours of operation used in tracking database estimates of
savings should be disaggregated, at a minimum, by building type. In the six evaluations
where hours of operation were logged electronically, annual hours varied by as much as
50% across building types, a much larger variation than is usually found in buildings of
the same type (although in two cases, annual hours varied almost as widely across
buildings of the same type because of vacancy and usage characteristics).* Finally, the
differences between customer self-reports and metered estimates of hours of use are fairly
large; the additional cost of metering or site inspections may be warranted if the accuracy
of savings estimates is a concern.

2.1.1.3.Hours of Operation Changes and Takeback

2.1.2.

After an energy efficiency retrofit, consumers may change their behavior so as to vitiate
part of the efficiency gain (Hirst 1991). Such “take back™ effects can subvert some or all
of the energy saved. Consolidated Edison and Central Hudson surveyed program
participants; neither utility found any evidence of take back in its commercial lighting
retrofit rebate programs. Seattle City Light surveyed program participants and found that
operating hours had increased, after measure installation for a small number of
participants. But because the increase in operating hours was not due to installation of
efficient equipment, take back was not indicated. Our sample suggests that commercial
lighting programs have generally not exhibited take back; lighting operation hours are
unlikely to change simply because of cheaper operating costs.

Measured Consumption Program Savings Estimates Using End-Use Metering

Electronic meters and data-loggers to monitor energy use are effective means of
measuring both energy savings and peak-demand reductions. Metering of equipment is
performed both before and after measure installation. For the four programs in our
sample that were metered, at NEES, NU, and PG&E, sample sizes ranged from 21 sites

4 See also Owashi, L.D., Schiffman, D.A., Sickels, A.D., “Lighting hours of operation: Building type versus space use

characteristics for the commercial sector”, Proceedings of the 1994 ACEEE Summer Study, 8:157-162.
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2.1.3.

to 67 sites. Because all four end-use metering studies were performed- by just two
contractors, it comes as little surprise that similar methods were used. All four studies
used spot-watt metering in tandem with metered hours of operation to determine kWh
saved. Demand savings were estimated using data from the metering devices only. All
four studies had meters installed for at least two weeks before and two weeks after
program measures were installed.

All four metering studies were explicit in their measurement and analysis of distinct
program savings parameters. Evaluation reports compared the number of measures per
site, annual hours of operation, and watts saved per measure (as described in the tracking
database, estimated with site inspections, and measured using end-use metering). By
comparing these parameters among evaluation methods, evaluators uncovered important
information about the ratio of metered savings estimates to tracking database estimates.
For example, in NEES’ Energy Initiative Program, on-site estimates of measures installed
were 100% of tracking database estimates, metered estimates of hours of operation were
77% of tracking database estimates, and spot-watt metered estimates of the change in
watts consumed per measure were 87% of tracking database estimates. Confidence
intervals were also calculated around the ratios of these parameters. Parameter level
information collected in these kinds of studies can be used to improve future tracking
database estimates of savings.

The main drawback of end-use metering is its high cost, which usually precludes metering
at every participant site. Metering is labor intensive, with multiple site visits required to
install, maintain, and remove the equipment. In none of these programs was every
measure sampled at every site, so another potential drawback is the biases that may result
from sampling a nonrepresentative set of measures (e.g., those that are easiest to connect
to data loggers) at each site.

"Metering is also usually performed for a limited amount of time. Because consumption

patterns vary with weather and seasons, however, metering over a limited amount of time
could result in a biased estimate of savings. And because metering studies omit
comparison groups, downturns or upswings in the economy are not correctly recognized

- as a change in participant baseline consumption, further biasing the savings estimate.

Finally, metering only the newly installed lighting equipment does not enable calculation
of interaction effects: changes in heating and cooling loads as a result of cooler-
operating lighting. We explore the magnitude of such biases in subsequent chapters.

Examining Top-down Models of Annual Savings

The evaluation community uses a wide range of models which incorporate customer
billing data. It would be prohibitive to test the simulation datasets on every single model
ever used to evaluate an energy efficiency program. Based on the most common
econometric models used in our sample of lighting program evaluations, we have selected
two different types of models which use billing data to test, comparison models and
regression models. Within each type, several popular variations are also tested.
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Quasi-experimental designs are used when study and sample characteristics make locating
an identical control group difficult. The classic quasi-experimental design types were first
explicated by Campbell and Stanley>:

“One-group pre-test post-test designs” utilize program participant consumption data
before and after program intervention.

“Static-group comparison designs” utilize program participant and nonparticipant
consumption data for the period after program intervention occurred.

“Nonequivalent comparison group designs” utilize program participant and
nonparticipant consumption data from both pre- and post-program time periods.

The first type of model is a simple comparison model. This model calculates energy
savings by taking the difference of pre-program and post-program consumption, or the
difference of participant and non participant consumption. The second type of model
pools monthly or annual billing data for a group of participants and non participants, and
regresses consumption in the current time period against several explanatory variables,
including building size, hours of operation, and cooling and heating degree days. The
variations we examine are listed in Table 2-2.

Table 2-2. Summary of Comparison and Regression Models Using Billing Data

Pre-program Post-Program Pre-Program Post-Program
Model Participant Participant Non-participant  Non-participant Indicator
Data? Data? Data? Data? Variable
Time-series x b 4 i N/A
comparison
Cross-section X X N/A
comparison
Time-series, b 4 b 4 ) 4 ) 4 N/A
cross-section ‘
comparison
Time-series b 4 b 4 Post-program
regression (V)]
Cross-section b 4 b 4 Participant
regression 0/1)
Time-series, } 4 b 4 X b 4 Participant x
cross-section Post-program
regression /1)
SAE regression b 4 X X b 4 Engineering
Estimate of
Savings

5 We briefly describe the evaluation models here. For more information see the sources of these descriptions: Campbell,
D.T., Stanley, J.C., Experimental and Quasi-Experimental Designs for Research, Houghton Mifflin, Palo Alto, 1963.,
and Impact Evaluation of Demand-Side Management Programs, Electric Power Research Institute, Palo Alto, CA,
EPRI-7179, v.1, February 1991.
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2.1.3.1.Time-Series Comparison of Consumption Data

This is a one-group pretest-posttest design, requiring collection of program participants’
energy consumption data both before and after program participation. As shown below,
the post-program (t,) consumption of participants (Q,) is subtracted from their pre-
program consumption (t,) to obtain a savings estimate. Such an analysis can be
misleading unless the consumption data is normalized for exogenous factors such as
weather. Use of a normalization method to adjust for different weather conditions can
improve the accuracy of the resulting estimate. However, changes in energy
consumption due to price effects and naturally occurring conservation are not controlled.

NetSavings = 0, (2,)— Q,(2,)

2.1.3.2.Cross-Section Comparison of Post-Program Consumption

This method is a static-group comparison that compares mean consumption of the
participants to the mean consumption of a control group during the post-program period.
Collecting post-program consumption data from both participants and non-participants
(Qup) climinates difficulties associated with weather and price variations (assuming
participants and non-participants both experience identical weather and billing
conditions). However, this method assumes there were no differences in pre-program
consumption between participants and non-participants and that there are no differences
in the ways that participants and non-participants respond to changes in weather, fuel
prices, and other factors.

NetSavings = Q.. (t,)— 0, (t,)

2.1.3.3.Time-Series, Cross-Section Comparison of Consumption Data

This is a two-group pretest-posttest design, using participant and nonparticipant
consumption data from before and after the program intervention. The method attempts
to control for non-program factors which affect energy consumption by including non
participant data. This method is usually more accurate than a post-program cross section
comparison, because it includes information on changes in consumption over time, and
can therefore adjust for trends in consumption. The method, like other cross-section
comparison methods, assumes that, aside from program participation, the consumption
patterns of participants and non-participants are similar.

NetSdVings = [QF (to) - QP (tl )] - [QNP (to) - QNP (tl )]

2.1.3.4.Time-Series Regression

A variant of the time-series comparison method involves collecting demographic and
structural data (such as building square footage sgft, hours of operation hours, cooling
degree days cdd, etc.) from participants, and constructing a regression model where a
dummy variable (prepost) is used to specify the pre-program or post-program time
period. This method controls for changes in weather when cooling and/or heating degree
days is used as an explanatory variable, but does not control for selection biases or
energy price changes.

18
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kWh =0 + B,sqft + B ,hours + B ,cdd + B, prepost +¢

The importance of using a comparison group in an analysis of consumption records is
exemplified by the experience of BPA evaluators. The BPA Industrial Lighting Incentive
program evaluation included a regression of participant characteristics against pre- and
post-program energy consumption. The model was unsuccessful in detecting a program
effect, which may have resulted from the model’s omission of a comparison group of
nonparticipants. Using a comparison group to help identify participants’ savings is
especially important when the energy impact is expected to be a small proportion of total
consumption, as in the case of a lighting program aimed at industrial customers.

2.1.3.5.Cross-Section Regression

A regression model constructed to include cross-sectional data and a dummy variable for
participation (participant) can control for some differences between participants and non
participants if demographic and dwelling data are provided. In most cases, however, this
is insufficient to control for free riders, participants who would have installed the
measures in the absence of the program.6 A logit model asséssing the probability of
adopting the energy conservation measure (among a control group) based on
demographic and dwelling data can be incorporated into the model to adjust for free
riders. A lagged dependent variable can be added to this model to include pre-program
consumption data.

kWh =0, + B sqft + B ,hours + B,cdd + B, participant + &

2.1.3.6.Cross-Section Time-Series Regression

For this method, a variant of the nonequivalent control group design, separate regressions
are performed for participants and non-participants before and after program
intervention. The means of the resulting estimates of energy consumption are then used
to estimate savings due to the program. The model can include customer demographic
and socioeconomic data in addition to billing information, so that the analysis can control
for non program factors which may affect energy consumption. Alternatively, the
evaluator can use a pooled time-series cross-section regression that includes all groups
and time periods in one equation, with a dummy variable equal to the product of the time
period and participation variables of the previous two models:

kWh=0. + B ,sqft + B ,hours + B ,cdd + B ,(prepost X participant) +¢

2.1.3.7.Statistically Adjusted Engineering Analysis

Using the tracking database estimate or some other, more improved estimate of savings
in place of a dummy variable has come to be described as a Statistically Adjusted

6 Train has asserted that a comparison group which properly controls for free ridership among participants is quite
difficult to construct. See Train, K.E., “Estimation of net savings from energy-conservation programs”, Energy,
19(4):423-441, 1994.
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Engineering (SAE) analysis.” SAE models also include a lagged dependent variable,
representing the electricity consumption in the previous period. If nonparticipant data are
used to construct a cross-section SAE model, the Savings Estimate variable is zero for
nonparticipants. The coefficient on the explanatory variable representing savings can be
interpreted as a ‘realization rate’: the fraction of the savings estimate verified using
customer and billing data. A possible SAE model specification is given below.

kWh,_, =0, + B,sqft + B,hours + B cdd + B ,(Savings Estimate) + B kWh,_, +&

Estimates obtained using SAE models ranged from 0.53 for NEES’ Energy Initiative
program to 1.05 for ConEdison’s C/I Efficient Lighting program. A possible reason for
the variation in SAE-obtained ratios of measured consumption savings to tracking
database estimates is the differing origins of the elements within the tracking database
estimates. For example, NEES used a tracking database estimate based only on rated
equipment efficiencies and estimated hours of use. ConEd adjusted its tracking database
estimate based on a survey of customers collecting information on hours of operation,
take back, and free riders. Differences in sample size, duration of pre/post data used, and
other explanatory variables used in each model also have an impact on each model’s
results.

Table 2-3 summarizes the methods used by the evaluations in our sample along with
some characteristics of each model. Neither tracking estimates nor first-year post-
program estimates of savings can verify the long-term persistence of program savings
over the manufacturer estimates of measure lifetimes. Renovations, building demolition,
and equipment failure all reduce the effective measure lifetime. Repeated site visits or
billing analyses are required to continually verify savings over the lifetime of the efficient
equipment. Not surprisingly, none of the utilities in our sample have performed studies
which address the long-term persistence of program savings.8

Application-specific considerations may also affect the persistence of savings for reasons
that have little to do with the equipment installed. Several recent studies suggest that
energy efficiency measures may sometimes be removed from service through remodeling
or demolition prior to the end of their useful lives (Skumatz 1993, Petersen 1990,
Velcenbach 1993). The probability of premature retirement of equipment is a function of
both general economic conditions as well as site-specific considerations (for example,
building and business type).

7 Train, K.E., “An assessment of the accuracy of statistically adjusted engineering (SAE) models of end-use load curves”,
Energy, 17(7), pp. 713-723, 1992. - .

8 Utility DSM programs and DSM program evaluation are too young to have long-term studies of persistence; measures
from the earliest large-scale DSM programs (from the early 80’s) are just reaching the end of their manufacturers’
rated lifetimes.
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Table 2-3. Summary of Evaluation Methods Based on Billing Data

Utility Type of Difference or  Comparison Sample Size Notes (time-series data
Regression Model Group (total part.) used, sample
Used stratification, etc.)

BECo AConsumptionpan - Eligible 772 (919) part. 12 mos. pre, 8 mos.
AConsumptionnenpae, ~ NONparticipants 5826 nonpart. post; 10 strata based on

size and seasonal
usage

CHG&E SAE, facility type, Eligible 54 (606) part. 4-5 mos. pre, 4-5 mos.
bldg. characteristics.  nonparticipants 116 nonpart. post; verified hours w/
vars., 2 tracking customer surveys
estimate vars.

Con Edison SAE, facility type Eligible n/a (2,276) part. 4 mos. pre, 4 mos. post;
vars. nonpart. and n/a nonpart. verified hours w/

soon to be customer surveys
participants

NEES EI SAE, self-selection Eligible 369(4,114) part. 12 mos. pre, 12 mos.
var., bldg. char- nonparticipants 611 nonpart. post
acteristics vars, 1
tracking estimate var.

NEES Smi C/l | AConsumptiongan; Eligible 831(2,494) part. 12 mos. pre, 12 mos.
adjusted for nonparticipants 698 nonpart. post
nonparticipants

NU SAE, self-selection Eligible 1,123(5,967) 5 mos. pre, 5 mos. post;
var., facility type nonparticipants  part. 7 strata based on size;
vars., 1 tracking 1,271 nonpatri. weather adjusted kWh
estimate var.

PEPCO Pooled cross-section  Eligible 341 (345) part. 12 mos. pre, 12 mos.
regression, self- nonparticipants 1,452 nonpart. post; 4 strata based on
selection var. ) size; weather adjusted

kWh

SCL AConsumptiongan - Eligible 118 (128) part. 12 mos. pre, 12-36 mos.
AConsumptionpenpan. nonparticipants 229 nonpart. post

PG&E SAE, self-selection Eligible 724(6,432) part. 12 mos. pre, 12 mos.
var., bldg. char- nonparticipants 370 nonpart. post
acteristics vars., 1
tracking estimate var.

SDG&E CDA, 12 end-use None 181(789) part. 12 mos. pre, 12 mos.

vars.

post; adjusted model
based on end-use
metering results

Notes: facility type vars: dummy variables used to indicate the type of facility (office, retail, school, etc.), building
characteristics vars: variables used to indicate changes in floor space, participation in other DSM, recent renovation,
upswing in business, etc., self-selection var.: variable obtained from a logit model and used to adjust for self-selection
bias, tracking estimate var.: variable used to indicate the tracking estimate of savings for each customer, pre/post: refers
to the numbers of months of billing data compiled before and after program measures were installed.
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Current estimates of savings are often based on the assumption that equipment will
operate for the duration of the manufacturers’ estimates of the equipment’s useful

life.? Assumed measure lifetime varied widely for identical measures from program to
program in_our sample. In some programs, lifetimes were based only on
manufacturers’ estimates of product longevity. In a few cases, estimates were
adjusted downwards to account some for premature retirement resulting from the
predicted frequency of building renovations. Several utilities (CMP, NEES, SCL)
used site inspections and bill analyses to estimate savings persistence one, two, and
three years after installation; in no cases, however, were measure life estimates based
on a complete longitudinal set of data from past program participants. The average
measure life used to' calculate program savings for each program in our sample is
given in Table 2-4. In cases where our original estimate of measure life did not come
from the utility, it was subsequently verified by a utility representative.

Examining billing data over several years can provide an estimate of overall savings
persistence. NEES evaluators used billing analyses to verify savings persistence over
a two-year period. SCL evaluators used comparisons of participant and
nonparticipant billing data to estimate savings persistence over a three-year period.
While NEES found almost 100% persistence, SCL found a gradual degradation of
savings: where approximately 95% and 88% of original savings remained after two
and three years, respectively. The cause of such a degradation, however, is not
limited to measure removal. Degradation of savings as evidenced by a billing
comparison could be the result of increases in nonparticipants’ equipment efficiency,
poor maintenance of measures, or increased consumption resulting from take-back.

9 Alternatively, for the ASHRAE or AHAM estimate of measure life.
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Table 2-4. Summary of Measure Life Estimates Used to Calculate Lifetime

2.2.

Savings
Utility Measure Life Estimate Source of Estimate0
(years)
BECo 15.0 IRT report!?
BHEC 10.0 utility report12
BPA 15.0 utility report
CHG&E 10.0 utility contact
CMP 7.0 utility report
Con Edison 11.0 utility contact
GMP Small 14.7 utility report
GMP Large 6.1 utility report
IE 12.0- utility report
NEES EI 18.0 Nordax database3
NEES Small C/I 15.0 Nordax database
NMPC 13.0 utility contact
NU 17.0 utility contact
NYSEG 10.0 utility contact
PEPCO 9.5 utility contact
PG&E 15.9 utility report
SCL 12.9 utility report
SCE 16.0 utility report
SDG&E 15.0 IRT report
SMUD 5.0 utility contact
Summary of Bias and Precision in DSM Evaluation

Table 2-5 summarizes the ways in which each evaluation method can introduce bias or
imprecision into an estimate of annual savings for a program distributing commercial
lighting equipment. The forthcoming chapters in this report investigate the magnitude of
these effects using data from previous evaluation studies as well as simulation techniques.
The long-term goal of such an analysis is to improve the characterizations of bias and
precision to such an extent that the evaluation needs of all programs are reduced: only
those parameters which have been found to induce the worst bias and imprecision are
investigated in the course of an evaluation. Because the state of current practice limits
our sample of available evaluations to a few handfuls, we conduct as thorough a
characterization as the data allows. Ultimately, we hope others will continue these efforts
as more evaluations with the requisite data are conducted (and reported on) by utilities.

HRT report: program summary sheet from the Results Center Aspen, CO.
12 Ytility report: evaluation report from utility.

13 Nordax database: data from the Northeast Region DSM Data Exchange.
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Table 2-5. Summary of Annual Savings Evaluation Methods Examined

Method to Effects Primary accuracy Potential bias in annual Potential
estimate treated/accounted for | limitations savings estimate due to: imprecision in
annual annual savings
savings == estimate due to:
Tracking baseline equipment, usage | over/underestimation of Precision not
database patterns, equipment baseline and program estimated
(engineerin installations not verified, equipment efficiencies,
g estimate) efficiencies from mfr. hours of operation
specifications, requires .
gross assumptions
regarding consistent
customer behavior
Site baseline equipment still simplifies equipment over/underestimation of Precision not
inspection (with pre-installation usage patterns, does not operating hours or estimated
inspections) and verify equipment energy equipment efficiencies by
efficient equipment consumption at customer auditors/ in customer
specification errors in | sites . surveys
tracking database,
hours of operation
{from auditor/
customer survey)
End-use variations in metered sample may not seasonal variations in limited duration
metering equipment usage, accurately represent equipment usage, metering,
baseline usage (if population, metering of HVAC/lighting interaction extrapolation from
pre/post metering) limited time duration, no effects, unrepresentative sample to
' comparison group sample of population
customers/equipment/build
ing zones metered
Customer changes in provides little non-normality of data/error | improper model
bill-based equipment usage, understanding of program | term, improper model specification,
econometri | changes in weather, | strengths/weaknesses or specification, improper inadequate
¢ models changes in baseline justification for its savings | comparison group, variability in data,
» energy use (with estimate, requires one year { inadequate variability in low signal/noise
comparison group) of post-program data data, low signal/noise ratio | ratio
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Using Simulation Techniques to Assess Performance
of Tracking Database and Site Inspection Evaluation Methods

In this chapter we examine ‘bottom-up’ evaluation methods: tracking database and site
inspection methods which utilize information on the exact types and quantity of equipment
installed at each participant’s site. Using a combination of simulation techniques and actual
program and customer data, we investigate the importance of the different parameters
used to estimate energy savings, and the accuracy of current methods. In the following
chapter, we examine bottom-up methods incorporating end-use metering data.

Bottom-up tracking database and site inspection methods are attractive because they
involve minimal additional data collection, utilizing existing data collected during the
program’s audit and/or application process. However, the correctness of this data, and of
additional calculations based on equipment manufacturers’ estimates of equipment
operation are not well understood. Knowledge of the uncertainties pertinent to bottom-up
evaluation will enable evaluators to improve evaluation results, and make better decisions
regarding the evaluation method selection. -

The chapter begins with an analysis of detailed information from three commercial lighting
programs. Visual display of the quantitative information is used to characterize the
uncertainty of tracking database and site inspection estimates of savings. Our limited data
on tracking database and site inspection methods is combined with estimates of data
collection and data analysis costs in order to compare the costs and performance of the
different methods.

A flowchart for the analysis described in this chapter is given in Figure 3-1.

Figure 3-1. Analysis of Bottom-up Evaluation Methods
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Chapter 3

3.1 Tracking Database and Site Inspection Estimates: Unbundling the
Realization Rate ‘

For this analysis, we use 75 customer sites of end-use metered data from three commercial
lighting retrofit programs: New England Electric System’s (NEES) 1991 Energy Initiative
and Small C&I programs, and Northeast Utilities’ (NU) 1991 Energy Saver Lighting
Rebate program.! All three programs provided rebates for commercial customers in the
Northeastern United States who replaced less efficient interior lighting equipment with
more efficient alternatives. Because all three programs were evaluated using end-use
metering, and because site inspection and tracking database estimates were also available,
we can use the evaluation data to explicitly compare the accuracy of the different methods.

However, the conclusions stemming from an analysis of these three programs’ data cannot
necessarily be extrapolated to all commercial lighting DSM programs, let alone all DSM
programs. Because different populations can have different characteristics which affect
variability of energy consumption and the accuracy of different evaluation methods, a
much larger sample of programs would be required before more general conclusions could
be drawn regarding the accuracy of various evaluation methods. In future research,
metering information from a much larger sample of programs could be analyzed using the
framework described here. Such an analysis would produce a more generalizable result

- regarding the accuracy and precision of tracking database, site inspection, and end-use
metering estimates of annual energy savings, and could correlate program and tracking
database characteristics with method performance.

Some evaluation analysts calculate the ratio of their final savings estimate based on
extensive ex post evaluation to their tracking database estimates of savings, and refer to
this ratio as the “realization rate. In 1991, Nadel and Keating compiled results from more
than 40 DSM program evaluations, and pointed out that this ratio often diverges
considerably from one, the tracking database estimate of savings usually being larger than
the final savings estimate.2 Some DSM analysts have taken this to mean that engineering
estimates of savings are useless, and should be discarded. Such a conclusion is premature.
A more thorough characterization of bottom-up evaluation methods is necessary before
one can dismiss engineering estimates entirely. The realization rates for the three program
evaluations from the Northeast are given in Table 3-1.

I RLW Analytics, Inc. and The Fleming Group. 1992. Energy Saver Lightipé Rebate: Results of the 30-Site Short Duration
Monitoring Test, C&LM Department, Northeast Utilities, Westbrook, CT.

RLW Analytics, Inc. and The Fleming Group. i992. Small C/1 Program: Impact Evaluation Using Short-Duration Metering,
New England Electric System, Westborough, MA.

RLW Analytics, Inc. and The Fleming Group. 1992. New England Power Service Company Energy Initiative Program:
Impact Evaluation Using Short-Duration Metering, New England Electric System, Westborough, MA.

2 Nadel, S.M. and K.M. Keating. 1991. “Engineering Estimates vs. Impact Evaluation Results: How do they Compare and
Why?” Proceedings from the 1991 Energy Program Evaluation Conference, pp. 24-33. Chicago, IL.
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Table 3-1. Program realization rates for gross annual savings

Program Realization Rate
NEES Small C&l .88
NEES El .70
NU ESLR : .87

The data in Table 3-1 indicates that 70-88% of the tracking database estimates of savings
were verified by the end-use metering estimate. This is consistent with the assertion that a
tracking database usually overestimates actual savings. While previous studies consider
realization rates as an end result, these realization rates are the starting point for this more
detailed investigation. Forthcoming sections examine the annual savings equation (given
in 2.1.1) parameter values’ uncertainty in order to understand what the realization rates
represent, and how the tracking database estimate can be cost-effectively improved.

In order to compare the results of different methods, we unbundle the realization rates in
several dimensions: :

e We examine not only the realization rates which represent the differences between
metering and tracking database estimates, but also between metering and site
inspection estimates of savings.

¢ We examine the realization rates for three components of the savings estimate:
1. Measures per site
2. Hours of operation
3. Watts saved per measure

Table 3-2 provides estimates of measures installed per site, hours of operation, and watts
per measure, obtained using end-use metering and site inspections, for several programs.3
Multiplying the parameter level realization rates yields the aggregate realization rates
presented in Table 3-1. The numbers presented in Table 3-2 are expressed as a ratio of
the parameter value obtained using metering to the value in the program’s tracking
database. For example, the tracking database underestimated the number of measures per
site, on average, by 3% for NEES’ Small C&I program.

3 The data in Table'3-2 are not weighted by the number of measures per site because we did not have access to sufficient
information to perform such a weighting. Thus, the results we present deviate slightly from the original evaluation studies.
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Table 3-2. Comparison of parameter values from different evaluation
methods

R # Sites  Measures Waltts Saved per

Metered  per Site Mours of Operation Measure

Ratio of Metered Estimate to:  Tracking Tracking Site Insp  Tracking Site Insp

NEES Small C&l 21 103% 92% 96% 93% 96%
NEES Energy 23 102% 80% 89% 86% 93%
Initiative

NU Energy Saver 30 101% 89% 113% 97% 91%
Lighting Rebate

While the number of measures installed per site are underestimated slightly in the tracking
database, the tracking database overestimates every other parameter. All but one
parameter (hours of operation in the Energy Saver Lighting Rebate program) is
overestimated through site inspections. The tracking database overestimates the actual
savings per site by overestimating the individual parameter values used in the equation to
calculate savings. The parameter value ratios in Table 3-2 are more informative than the
aggregate realization rates. A glance at Table 3-2 can inform the analyst that systematic
overestimation of hours of operation, and Watts saved/measure, but not measures installed
per site, are the largest contributors to inflated tracking database estimate of savings..

Even though the parameter values in Table 3-2 suggest the existence of a systematic bias
in the tracking estimates, it is equally important to examine the variability of this bias.
This is different than simply examining the variability in a single parameter, such as hours
of operation, across sites. Here we are interested in the variability of the ratio of tracking

- database estimates and metered estimates (or site-inspection estimates) for a parameter. A
small variability would indicate that a simple adjustment of the parameters in the tracking
database could dramatically improve tracking database accuracy and subsequent estimates
of savings. But a large variability would suggest that important, extraneous factors could
be missing from the parameter values used in the tracking database, requiring more
caution than simply using a scalar adjustment to improve the estimate.

Examining the ratio of savings estimates for the NEES and NU programs in our sample
reveals significant variability in the realization rates across the three programs’ 75
customer sites. We illustrate this variability in Figure 3-2 by plotting the ratio of metered
parameter values to tracking parameter values, and of metered parameter values to site
inspection parameter values, along with each ratio’s standard deviation.
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Ratio of metering to nonmetering estimates

Figure 3-2. Differences between parameter values
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For many of the realization rates, the systematic bias described in Table 3-2 is framed by a
much more significant stochastic component, as illustrated in Figure 3-2. The large
variability in parameter values obtained with different methods may mean that the
parameter values used in the tracking database, while fairly accurate on average, are
inaccurate for a large number of individual sites and/or measures. The greater the
stochastic component, the more difficult it is to generalize from the metered sites to a
larger sample of participants, and the more difficult it becomes to systematically correct
for error by adjusting tracking database estimates.

The value of expanding the realization rate and presenting the results graphically is
especially clear when the results of the NU program are examined. In comparison to the
other two programs, the wide variations between site inspection and metered estimates of
hours of operation, and between tracking and metered estimates of the change in watts per
measure indicate problems with the tracking database. Indeed, evaluators found
inaccuracies in the tracking database algorithms used to calculate the change in watts for
optical reflector retrofits and metal halide retrofits. These errors in the tracking database
calculations explain the large standard deviation for the change in watts parameter:
savings from metal halide retrofits were systematically underestimated and savings from
optical reflector retrofits were systematically overestimated, creating a wide, bimodal
distribution for the hours of operation realization rate. However, the evaluators gave no
reason for the discrepancy between hours of operation estimates based on site inspections,
and those based on metering.
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3.1.1 Uncertainty Propagation: Assessing the Accuracy and Precision of Site Inspection and
Tracking Database Estimates of Savings

In the previous section, we described the variability of the parameters which comprise the
realization rate. In this section, we use Monte Carlo techniques to estimate the
uncertainty of savings estimates based on the uncertainty of the parameters that make up
each realization rate. This type of analysis, where information regarding the variability of
the inputs is used to estimate variability in the outputs, is known as uncertainty
propagation.*

For this part of the analysis, we use the site inspection and metering data from NEES
Small C&I and Energy Initiative programs to construct probability distributions for the
number of measures per site, hours of operation, and watts per measure for the model.
We construct two sets of input distributions:

1. The first set of input distributions is based on the differences in parameter values

- obtained using end-use metering and those in the tracking database. The resulting
outcome distribution expresses the extent to which savings estimates obtained using
end-use metering differ from estimates in the tracking database. If end-use metering
results are assumed to represent actual savings, then the outcome distribution
generated here represents the degree to which tracking database savings estimates
deviate from this reality.

2. The second set of input distributions is based on the differences in parameter values
obtained using end-use metering and those obtained with site inspections. The
outcome distribution estimated using these parameters describes the variation of site
inspection estimates of savings from end-use metering estimates, and can be
interpreted as the degree to which site inspection estimates of savings deviate from
reality.

As a first approximation, parameters in our sample can be approximated with a normal
distribution. For example, a histogram of the difference between tracking database
estimates of hours of operation and metered estimates of hours of operation from the
NEES programs is plotted in Figure 3-3.

4 Morgan, M.G., Henrion, M., Uncertainty, Cambridge‘University Press, 1991.

5 We excluded the NU program from the following analysis because of unusually large systematic errors in its tracking
database estimates of savings.

6 Other distributions, such as a beta distribution, were found to have an improved fit, but did not affect significantly the
outcome of the analysis.
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Figure 3-3. Distribution of hours of operation realization rates
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Rank transformations were performed on each set of parameter data to verify the fit of a
normal distribution. The Monte Carlo analysis involved random sampling of probability
distributions to model the uncertainty of errors in tracking database and site inspection
estimates of savings. Latin Hypercube sampling was used to obtain 1000 sample points
per set of input distributions. These sample points were then input to the annual savings
equations to obtain distributions of annual savings and evaluation method error.

An analysis of the NEES and NU metering study data revealed the correlations described
in Table 3-3 between the errors of the components of the tracking database. To represent
this data accurately, the sampled points should -also approximate errors induced through
sampling beta distributions could be adjusted to approximate these correlations. This can
be accomplished using the decomposition and rank correlation methods discussed by Iman
and Conover.” However, the effect of these correlations is minor relative to the errors in
tracking database parameters themselves. Thus no correlation is induced in our analysis
and we assume the three parameters are uncorrelated.

Table 3-3. Correlations in errors between components of the tracking

database

Correlation Measures per Site Hours of Use Watts per Measure
Measures per Site 1.00

Hours of Use 0.28 1.00

Watts per Measure -0.20 -0.01 1.00

7 Iman, R.L., Conover, W.., “A distribution-free approach to inducing rank correlation among input variables”,
Communications in Statistics: Simulation and Computation, 11(3), 311-334 (1982).
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The average and standard deviations of the outcome distributions from all three sets of
input distributions are given in Table 3-4. These results are an estimate of the average
accuracy of the tracking database and site inspection estimates of savings for the 44 NEES
customer sites.

Table 3-4. Annual Savings realization rates from Monte Carlo models

- Ratio of: End-Use Metering End-Use Metering
to: Tracking Estimate Site Inspection
Average 78% 88%
Standard Dev. 34% 22%

If end-use metering most closely approximates the actual energy savings for the sample,
then tracking estimates of savings overestimate energy savings, on average, by
approximately 22% and savings estimates based on site inspection data overestimate
energy savings by approximately 12%.

While one may be tempted to conclude that the 78% figure in Table 3-4 is a transferable
‘realization rate’, an examination of the standard deviation associated with this estimate of
bias should temper this desire. The standard deviation associated with the model’s
outcome distribution suggest that the tracking estimate, while biased by only 22% on
average, varies considerably from site to site. The distribution of tracking estimate bias
across sites, as computed by the Monte Carlo model of annual savings, is given in Figure
3-4. ‘

If the tracking database estimate of savings closely approximated the metered estimate, the
distribution shown in Figure 3-4 would be sharp and narrow (and centered near 100%),
with a minimum of spread across the x-axis. But as the large standard deviation in Table
3-4 suggests, the distribution of realization rates is subject to a significant amount of
uncertainty. If we assume the distribution is roughly normal, the 90% prediction interval
for the distribution is between the wide margin of 34% and 122%. If one is interested in
only the mean value of savings, the 90% confidence interval around the realization rate
point estimate (78%) is between 70% and 86%.8

8 The realization rate and its point estimate can be extrapolated to a larger population only when the sampled population is
similar to'it in every respect. As a result, applying an average realization rate, gleaned from a subset of participants in one
program, to program participants of a subsequent or previous year, should be approached with caution. Even small
differences in the characteristics of the sample population and other populations could cause relatively large differences in
the average bias of the tracking estimates. Thus, without additional information it is inadvisable to cross-apply realization
rates from one program to another, or, in principle, from one program year to another.
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Figure 3-4. Distribution of annual savings realization rates
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The smaller standard deviation for the outcome variable representing the difference
between site inspection estimates of savings and end-use metering estimates indicates that
site inspection provides savings estimates which are more precise than the tracking
database. The 90% confidence interval around the site inspection point estimate (88%) is
between 82% and 93%, considerably narrower than the prediction interval itself.

3.1.2 Uncertainty Analysis: Reducing Uncerta.inty in Site Inspection and Tracking Database
Estimates of Savings "

In this section, we compare the importance of the parameter uncertainties in terms of their
relative contributions to uncertainty in the savings estimate, i.e., uncertainty analysis.
This type of analysis reveals which parameters’ values must be made more accurate in
order to improve the precision of the savings estimate. ‘

We perform uncertainty analysis by computing the rank correlation between input
variables and annual energy savings for each model and examining the results. By
comparing rank correlations between each input distribution and the outcome distribution,
we can determine which input parameters contribute the lion’s share of the uncertainty to
the outcome distribution. If we then improve a single parameter’s precision and compare
correlations from different models, we can determine how valuable different evaluation
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3.2

techniques are in reducing the relative uncertainty of program parameters. This allows
program evaluators and planners to trade off evaluation method uncertainty with method
cost. '

If end-use metering estimates of savings are assumed to best approximate reality, then we
can interpret the rank correlations in Table 3-5 to mean that most of the uncertainty in
tracking estimates of savings is due to misspecifications of the hours of operation
parameter, and the same parameter is responsible for most of the uncertainty in site
inspection estimates of savings.

Table 3-5. Correlation of uncertainty in pérameters to uncertainty in
savings

Importance of Parameter Tracking Estimate and End-  Site Inspection and End-
Between: Use Metering Use Metering

Measures per Site ' 0.26 —

Watts per Measure 0.48 0.59

Hours of Operation 0.82 0.78

An important issue for evaluation practice involves the question of whether and when to
use more rigorous evaluation techniques. In this case, our analysis suggests that for both
tracking estimates and site inspection estimates of savings, the estimate of hours of
operation are responsible for much of the uncertainty in the final savings estimates. If data
loggers, or a similar technique, provides hours of operation parameter estimates that are a
significant improvement over those used in tracking estimates and site inspection estimates
of savings, then augmenting tracking estimates or site inspection estimates with this
improved hours of operation information could result in savings estimates comparable
with those obtained using end-use metering, but at a potentially lower cost. Alternatively,
disaggregating hours of operation by measure type or by building usage characteristics
may improve tracking estimates of hours of operation.

The results would have been dramatically different if we had included NU’s Energy Saver
Lighting Rebate data in the uncertainty analysis: the systematic errors in NU’s tracking
algorithms would have skewed the results; most of the uncertainty in tracking database
estimates of savings for the three programs would have been due to the change in watts
per measure parameter. The small sample (of three programs) which we investigate here
does not enable us to determine if systematic errors in tracking databases, such as those
uncovéred in the Northeast Utilities data, are a common occurrence.

Comparing Accuracy to the Costs of Data Collection

In this section, we integrate the previous analyses of the chapter to compare estimates of
savings from tracking database and site inspection methods with their data collection
costs. Our estimates of the precision and accuracy of each method’s results are subject to
several qualifications: '
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3.2.1

We only examine a handful of programs in this analysis. Thus, we describe each method’s
accuracy and precision in the context of these programs; we cannot definitively determine
the accuracy and precision of each evaluation method. With a large sample of programs
and the use of methods which aggregate information (including Bayesian and meta-
analytic methods) one could produce a more definitive estimate of each method’s abilities.

Our estimates of each method’s precision are based on a finite set of recognized
variabilities in the program data and methodological limitations. Other factors may affect
the estimate precision which are not covered in this analysis.

Our estimates of the accuracy of tracking database and site inspection estimates of savings
are based on a comparison of metered.results with the results from tracking database and
site inspections. Our assessment of tracking database and site inspection estimates will be
affected if metered results suffer from systematic bias due to omission of interaction
effects, and overestimate precision due to limited duration metering.

In order to obtain estimates of evaluation data collection and data analysis costs, we
reviewed the DSM literature, and we sent a short questionnaire to five DSM evaluation
practitioners. Table 3-6 lists the resulting estimates for the cost of bottom-up evaluation
methods.

Table 3-6. Estimates of data collection and analysis costs for bottom-up
evaluations

Estimate Type Data Collection Data Analysis Economies of Scale
Costs/Site Costs/Site -

Tracking Database $0 (collected from $25 No
program records)

Site Inspection 300-750 300-750 Some (1.5% reduction

, /10 sites)

Site Inspection with 700-750 700-750 Some (1.5% reduction

Pre-Post Spot Wait /10 sites)

Metering

The costs given in Table 3-6 are only rough approximations, based on the judgment of
several consultants who regularly conduct these evaluations. The actual costs for a
specific evaluation are dependent on the types and sizes of customer buildings, the variety
of measures installed by the program, and the specific monitoring equipment used. There
are some economies of scale for projects which include large numbers of site visits. Other
methods do not provide significant cost reductions with larger sample sizes. For the
following cost/precision comparisons, we use the middle value of each range of costs in
Table 3-6.

Costs, Accuracy, and Precision of Tracking Database and Site Inspection estimates of
Savings

The first comparison of evaluation cost and accuracy we examine is for tracking database
and site inspection estimates of savings. In section 3.3 we used the data from NU and
NEES to estimate the accuracy (relative to metered estimates of savings) and precision of
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these evaluation methods. In Figure 3-5 we display the cost and accuracy/precision of
tracking database and site inspection estimates for the programs from NU and NEES. As
before, accuracy is expressed as the ratio of each program’s metered estimate of savings
to the estimate of savings from the tracking database or site inspections (i.e., it is assumed
that metering provides the actual savings). Precision is expressed as the 90% confidence
interval around the mean estimate of the ratio. The graphs also include a third data point

‘indicating the cost and accuracy/precision of an estimate of savings obtained through site

inspections that include spot watt metering to verify consumption of pre-installation and
efficient program equipment. Because all evaluations require a tracking database, the cost
of the program tracking database is included in each evaluation methods’ cost. Cost
estimates vary for the three programs because sample sizes and total program size varies.

Figure 3-5. Tracking Database and Site Inspection Cost, Accuracy, and
Precision )
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While the data in Figure 3-5 illustrate that tracking database and site inspection estimates
generally do not differ from metered results by more than 40%, an evaluator calculating
savings using tracking database or site inspection data has no way of knowing precisely
where in this (relatively wide) range their estimate of savings falls. If we had access to a
larger sample of results from other end-use metering studies, we could attempt to
characterize the uncertainty in tracking database and site inspection estimates more
completely, which could aid evaluators in estimating the accuracy and precision of their
tracking database estimates without the use of additional evaluation. Without such a
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3.3

characterization, evaluators must rely upon metered results and top-down estimates of
savings to locate their tracking database and site inspection estimates in this range.

Earlier in the chapter we used importance analysis to deduce that uncertainty in hours of
operation contributed the largest component to the uncertainty in the tracking database
and site inspection estimates of savings. The marginal cost of adding spot-watt metering
to site-inspection estimates of savings is a small fraction of the marginal cost of adding
run-time data loggers, which require significant additional capital and labor-related
expenses. Thus, we estimate the savings associated with adding spot watt meters in this
section, and reserve improved hours of operation estimates for the next chapter which
focuses broadly on metering cost, accuracy and precision.

The third data point in on each graph signifies the additional cost, accuracy, and precision
when site inspection estimates are augmented with improved estimates of watts saved per
measure using spot watt metering equipment. Figure 3-5 indicates that for the two NEES
programs, such metering appreciably improves the site inspection accuracy and precision.
However, the NU program’s site inspection estimate of savings did not improve. This was
due to a slight negative correlation between the errors in watts saved per measure and
hours of operation. In this case, substituting spot watt-verified estimates of watts saved
per measure actually increased the imprecision of the savings estimate. For the two NEES
programs, we can state that augmenting site inspections with spot watt measures can
increase site inspection estimate precision by 10%-50%, with an additional cost of around
10%. However, this small sample does not allow us to make broad characterizations of
tracking database and site inspection information value in general.

Conclusions

Within our small sample, tracking database estimates of savings vary dramatically in their
accuracy and precision. We find imprecision in hours of operation to have the largest
effect on the uncertainty of the resulting annual savings estimate. We also find, in our
small sample, that hours of operation estimates contribute the lion’s share of bias to annual
savings estimates. If future studies with a larger sample of programs can confirm these
findings, it would suggest additional attention should be given to inexpensive and accurate
methods for improving tracking database estimates of hours of operation.

Because the precision and bias of tracking database and site inspection estimates of
savings seem to vary considerably, and because an evaluator, absent additional evaluation
information, has no means of estimating the accuracy and precision of their tracking
database estimate, it is dubious to rely upon tracking database estimates of savings alone.
A benefit of the type of analysis performed here, and of the detailed site inspection and
metering work performed and reported in the evaluations of the programs we studied in
Chapter Two, is that it allows tracking database accuracy and precision to be assessed and
improved by program implementation and evaluation staff. Using the framework outlined
in this chapter, analysis of a larger number of metering studies than was available to us
would permit a more complete characterization of tracking database and site inspection
estimates.
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4.1

Using Simulation Techniques to Assess Performance
of Bottom-Up Evaluation Methods

In this chapter we examine ‘bottom-up’ evaluation methods: metering methods which
utilize measured information on the actual consumption and operation of equipment
installed at participant sites. Using a combination of simulation techniques and actual
program and customer data, we investigate the importance of the different parameters
used to estimate energy savings, and the performance of current methods.

Bottom-up metering methods are useful because they involve detailed data collection on
equipment installed at participant sites. However, the costs of bottom-up methods that
collect extensive data are usually prohibitive, so that evaluators implement the analysis on
a sample of the population. Knowledge of the uncertainties pertinent to bottom-up
evaluation will enable evaluators to make better decisions about evaluation method
selection.

A flowchart for the analysis described in this chapter is given in Figure 4-1. A
combination of metered data, long-term hours of operation data, and simulated
commercial building consumption data are used to assess the performance of annual
savings estimates obtained from end-use metering data. These data are combined with
estimates of data collection and data analysis costs in order to compare the costs and
accuracy of the different methods.

Figure 4-1. Analysis of Bottom-up Evaluation Methods

Tracking
Database Data
Metering
Variability of T
4 Variability of End-Use Metering BHEies) (G,
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over Time . recision/Accuracy J—
Metered Variability of Metered Interaction YT
Data Data by Building Zone Effect Data ];;ata Zn:;:;?:
Costs

Estimating Variability in End-Use Metering Estimates

Most metering studies incorporate information from both metering activities and tracking
database or site inspection activities. The most common method in current metering
studies is to express annual program savings as a ratio of the metered estimate for each
site and the tracking database estimate for each site. These ratios can be averaged across
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4.1.1

all metered sites, and the resulting average ratio is multiplied by the tracking database
estimate of savings for the entire participant population to estimate total program savings.

Integrating the tracking database information with metered results reduces the annual
savings estimates’ tendency to be biased. Without using tracking database information,
the evaluator simply assumes that the metered sample is representative of the entire sample
(e.g., by stratifying and randomly selecting sites to meter from the participant population
in each stratum) and can therefore apply metered results to the entire population. Instead,
the evaluator uses information about the population (the tracking database estimates of
savings) and information about the metered sample (the ratio of metered estimates to
tracking database estimates of savings) to extrapolate the estimate of savings from the
metered sample to the entire population.

A recent EPRI Report describes a related method where the average difference, rather
than the ratio, of metered estimates and tracking database estimates is used to adjust the
estimates of savings for every program participant.! One should expect a ratio approach
to be appropriate when a systematic bias in the tracking database over or underestimates
actual savings by a certain percentage. A difference approach would be appropriate when
the tracking database values are expected to over or underestimate actual savings by a
certain value. We focus on the ratio approach in our analysis because the biases we
observe in hours of operation, watts saved per measure, and the number of measures
installed suggest that tracking databases proportionally overestimate savings; the larger
the tracking database estimate of savings, the larger the discrepancy between tracking
database estimates and actual annual savings.

How large a population must you sample for a given level of accuracy?

Because of the relatively large per-site expense associated with end-use metering, DSM
program evaluations almost never perform end-use metering on all participating customer
sites. Thus, the submetering of sites is performed, and sub-subsample of measures at each
selected site is metered. If one assumes optimal sample selection and stratification and a
normal distribution for the population’s savings, the 90% two-sided confidence interval
around the mean estimate of the metered sample savings can be used to estimate savings
for the entire population. The confidence interval is calculated using:

2
sample

Precision =1.645 %

n.vumple

Where Goumpre is the standard deviation of savings among metered sites and Zgmpre i the
number of sites metered. If one is using an average ratio of metered estimates to tracking
database estimates, the standard deviation of the ratio can used in the equation to calculate
the precision. If the variation in the sample, or in the ratios, is known in advance, it is
possible to back-calculate the sample size required to achieve the desired precision.
However, it is difficult to assume a sample variability a priori; extensive knowledge of the

! RCG/Hagler, Bailly, Impact Evaluation of Demand-Side Management Programs, Vol 1, Electric Power Research Institute,
CU-7179s, September, 1991.
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population and the program is required. Given a large enough sample Of Gyumpe’s from
past programs and populations, Bayesian updating, or other techniques incorporating prior
information could be used to improve initial estimates of sample variability and estimate
appropriate sample sizes.?

Another method to extrapolate to the entire program population takes advantage of
tracking database estimates of savings for all participants as well as the metered data for a
smaller segment. This method calculates the ratio of metered estimates of savings to
tracking database estimates for the metered sample of participants, and then extrapolates
to the larger participant population using this ratio and the tracking database estimates for
all participants.? If one assumes that the metered results are unbiased, this method can be
used to correct for bias in the tracking database estimates. In the next section, the
tendency for bias to exist in the metered results is investigated.

4.1.2 Within-Site Sampling Representativeness Issues

There are profound difficulties in selecting a representative sample of sites, and of
equipment at each sampled site. Convenience sampling, where the most accessible sites
are selected for metering, and the most accessible equipment at each site are metered, can
invalidate the ability to extrapolate from the sample to the program population using the
equation presented in preceding section. How much of a threat is convenience sampling
to statistical validity? One means of answering this question is to examine differences in
equipment usage by building type and by different areas within buildings. A recent study
performed by the consulting firm Xenergy for San Diego Gas and Electric presents
detailed information on the measures selected for metering.4 :

In the Xenergy study, space in commercial buildings was partitioned into eight space use
categories, called zones. Lighting loggers for measuring lighting equipment hours of
operation were installed in 3,900 zones in 88 buildings.. The results of these
measurements, by zone, are given in Figure 4-2. In addition to hours of operation
estimates obtained using lighting loggers, Figure 4-2 also includes customer estimates of
hours of operation for each building zone.

Two observations can be made regarding the data summarized in Figure 4-2. First, there
appears to be a significant range in metered hours of operation, which is at least partially
dependent on the location of the equipment in the building. Therefore, an evaluation that
only meters equipment installed in accessible locations (such as hallways) will generate an
estimate of hours of operation (and consequently savings) that is biased towards
equipment installed in that zone. Second, there appears to be a range of systematic biases
in customer reports of hours of operation: from equipment installed in halls, where

2 See DeGroot, M.H., Optimal Statistical Decisions, McGraw-Hill, New York, 1970.

3 Such a method was used by RLW Analytics in preparing the evaluation of Pacific Gas and Electric’s 1992 Commercial
Lighting Express Rebate Program. See PG&E, Double Ratio Analysis Final Report, September 1993, CIA-93-X01B.

4 Owashi, L.D., Schiffman, D.A., Sickels, A.D., “Lighting hours of operation: Building type versus space use characteristics
for the commercial sector”, Proceedings of the 1994 ACEEE Summer Study, 8:157-162.
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customers systematically underestimate hours of operation, to equipment installed in
conference rooms, where customers systematically overestimate hours of operation.
Thus, an evaluation that meters equipment installed in only one or two zones will generate
an estimate of the rafio between reported and metered estimates of hours of operation that
is probably not accurate for equipment installed in other parts of the building. A final
thought regarding customer reports: customers seem to report very similar hours of
operation for all zones within a building. Customers, like some evaluators, may not be
aware of the differences in hours of operation in different areas of a building.

Figure 4-2. Hours of Operation Estimates by Building Zone
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The hours of operation estimates in Figure 4-2 underscore the difficulty of selecting a
sample to meter which adequately represents an entire population of program participants
and the measures they install in different zones. Conference rooms and hallways are the
most deviant, with hallways logging more than 200% more hours of operation than
conference rooms. Private offices and storage areas are the most similar, with private
offices’ hours being approximately 10% longer than hours in storage areas. The sample
must be selected to adequately represent a cross-section of participant building types,
measures, and locations with buildings of measure installations. Unless the sample is
representative of the entire population, the data in Figure 4-2 suggest that the resulting
estimate of savings for the population could be biased by between 10% and 200%.

42




Chapter 4

4.1.3

Similar biases could be incurred based on differences between different commercial
building types (offices, hospitals, retail, etc.). Some stratification is already performed by
evaluators based on building size, building type, and even space surveys of particular
buildings. However, these techniques are not widespread.

How long should one sample for a given level of accuracy?

While sample sizes have been discussed at length in the evaluation literature, sample
duration has not received similar attention. Yet the issue of how long to sample hours of
operation and watts consumed (or saved) per measure should be of similar concern: In
the same way that different sites are expected to have different consumption
characteristics, necessitating statistical extrapolations from sampled groups to entire
populations, energy consumption characteristics can also change over time, necessitating
statistical adjustments based on the duration of the sampling for each site. Calculating the
accuracy of varying durations of metering requires many assumptions regarding the
variability of electricity consumption over time, or actual, long-term, metered data which
can be used to characterize the variability in electricity consumption over time.

The Energy Edge project, a research-oriented demonstration of energy efficiency in the
Pacific Northwest, provides us with a unique data set with almost all of the required
characteristics: 29 commercial buildings, with hourly metering of all lighting fixtures (as
well all other energy consuming equipment) for up to four years. From the total dataset,
there are five small and three large office buildings. The Energy Edge office buildings for
which metered data are available are described briefly in Table 4-1.

Table 4-1. Energy Edge Commercial Office Buildings

Building Location Size (kit¥) Comments

Siskiyou Ashland, OR 3.0 meters were disconnected by
building manager for six months

STS Ellensburg, WA 4.3

East idaho Credit Union Idaho Falls, ID 5.3

Dubal Beck Portland, OR 8.5

West Yakima Yakima, WA 16.2

Eastgate Bellevue, WA 25.1 muitiple tenants

Director Portland, OR 79.7 multiple tenants

Bellevue Place Bellevue, WA 388.0 multiple tenants

There are several methods available for computing hours of operation from hourly kW
data: we could estimate the hour each day at which most of the lights turn ‘on’, and the
hours at which most of the lights turn ‘off’. Instead we have opted to estimate full load
hours, which normalize lighting kW by the maximum lighting load. Thus, the full load
hours calculation incorporates both lighting load and lighting duration information. The
equation for daily full load hours is:
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24

| > (kW)
daily full load hours = =-——

max

Where kW, is the lighting kilowatt load in hour ¢, and kW, is the maximum kW load for
the building over the entire metered period. Weekly full load hours are the sum of 7 days’
full load hours. Figure 4-3 illustrates the average full load hours over time for the eight
Energy Edge buildings.

Figure 4-3. Weekday full load hours over time for Energy Edge Office
Buildings : '
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The lighting full load hours vary from site to site, as well as over time. The largest offices,
Bellevue Place, Director, and Eastgate, show considerable variation over time, this
variation could reflect changes in building occupancy. The buildings were all new, or
recently commissioned, at the time the metering began. The majority of buildings, large
and small, begin the metered period (which began on different dates for each site) with a
one to three month ramp-up of average full load hours. This may be due to tenants
gradually moving in over a period of several months after commissioning. Because the
meters connected to the lighting circuits in the Siskiyou office building were turned off for
six months, we omit this building from the analysis.
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The data in Figure 4-3 suggest that hours of operation vary over time in commercial
buildings. The metering activities for these buildings begun just after the buildings were
commissioned, so an initial ramping-up of hours of operation can be seen for some of the
buildings. Part of this variation is also seasonal, as described in section 4.1.4.

The method used to estimate the precision associated with metering the kW lighting load
for a building involves subsampling from the data used to construct Figure 4-4. The
subsampling strategy subsampled the full load data in continuous segments, varying in
duration from two weeks to six months. By overlapping the samples, the maximum
number of subsamples are taken for each duration.

To estimate the change in subsample precision, the average full load hours estimate for
each subsample is compared to the long-term (utilizing all available data) full load average.
For all subsamples of a given duration, the standard deviation of the difference between
the subsample estimates of full load hours and the long term estimate of full load hours
provides us with an estimate of the error associated with limited term metering. The
standard deviation of this difference for each subsample was used to calculate the 90%
upper and lower confidence levels for the range of metering durations. In order to utilize
all available full load hours data, subsampling was performed on all seven of the Energy
Edge office buildings, and the results were combined using a simple average.

Figure 4-4 illustrates the improvement in the precision of the short-term estimate as
metering duration increases.

Because an equal number of subsamples under and over-estimate average long-term full
load hours, the error across all subsamples averages about to about zero. Clearly, there is
a substantial increase in precision as metering duration increases from two to four weeks.
Metering longer than four weeks, however, reaps only linear increases in precision.

If this Energy Edge data are even partially representative of hours of operation changes
over time for most buildings, then an important component of the uncertainty in most
metering studies has not been given appropriate weight in past studies. Many DSM
metering studies assume the hours of operation are constant, i.e., that the hours of
operation measurements taken during sampling have zero variance over time. The only
imprecision in metering quantified in a traditional amalysis is the imprecision of
extrapolating from a metered sample to the entire population of participants.

The inherent imprecision of short term metering, as expressed in Figure 4-4, directly
affects the precision of any annual savings estimate based on short term metering. If the
hours of operation data exhibited in Figure 4-3 are typical of commercial office buildings,
then any short term metering study that omits a correction factor for metering duration
will overestimate the precision of the annual savings estimate.

A correction factor can be read off the plot in Figure 4-4, based on the duration of the
metering activity. This factor can be combined with the estimated precision of the
metered estimate of savings. By acknowledging that the hours of operation vary over
time, the actual precision of end-use metering estimates of savings are reduced. However,
by estimating the increase in overall precision as the duration of subsample metering is
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increased, one could explicitly tradeoff the expense and increased precision of longer
metering.

Figure 4-4. Precision of estimate improves with increase in duration of
metering
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4.14 Bias in Metered Results: Seasonality of Hours of Operation

Another important implication of the results in this section involves an evaluator’s ability
to ‘game’ the evaluation results: If periods of greater or lesser hours of operation can be
anticipated, metering can be performed during those periods when the resulting estimates
of savings can be higher or lower than actual average savings. Thus, shorter duration
metering can be used to generate estimates of annual savings that increase utility
shareholder incentive payments or justify a program that, in reality, is not cost-effective.

We performed some simple time-series analysis of the Energy Edge hours of operation
data in order to estimate the average change in mean daily hours of operation from season
to season. A time-series plot of the average annual cycle of hours of operation for all the
Energy Edge office buildings is given in Figure 4-5. Hours of operation are expressed as a
change from the annual average.
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Figure 4-5. Seasonal Variability in Hours of Operation
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From Figure 4-5 it is apparent that a seasonal variation in average hours exists, but it is
difficult to conclusively quantify because of the effects of holidays. Independence Day,
Thanksgiving, Christmas, and other business holidays influence the average daily hours of
operation of numerous work weeks each year. Filtering out these holidays results in a
seasonal pattern of hours of operation where winter hours are 30 minutes longer and
summer hours are 30 minutes shorter than the annual average.

In order to provide an accurate annual average hours of operation for a building or group
of buildings, this seasonal bias, as well as the bias apparent in Figure 4-5 due to holidays
and other disruptions to the work week, an evaluator must identify the extent of the bias
and adjust annual hours of operation estimates accordingly.

4.1.5 Bias in Metered Results: Interaction of Lighting with Heating and Cooling Loads

In addition to reducing lighting energy consumption, programs which install efficient
lighting equipment can also affect a building’s heating and cooling requirements. More
efficient lighting systems generate less waste heat than standard lighting systems. In an
office building, this reduction in waste heat can reduce cooling and increase heating loads.
In most cases, the reduced cooling loads save more electricity than consumed by the
increased heating loads (most commercial buildings do not use electricity to generate
space heat). End-use metering studies for lighting programs do not typically measure
changes in heating and cooling loads to supplement primary lighting savings. This
omission biases metering results so that they generally underestimate program savings. In
some cases, an adjustment to program savings is made across all sites to account for
interaction effects. This adjustment is usually linear, and usually adds an additional 5% to
15% savings to each buildings’ annual estimate. Unless based on some engineering or
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metering data, such an adjustment may under or overstate actual savings due to
heating/cooling-lighting interactions.

Past studies have estimated this additional energy savings, called an HVAC/Lighting
interaction effect, and noted that the magnitude of the effect is dependent on building
characteristics, weather, and heating and cooling equipment.® Thus, it is difficult to

“assume a priori a 5 or 10% increase in electricity savings, and add this to metered
estimates of savings, to include interaction effects. The savings may be larger or smaller
than this, depending on the location and characteristics of the participating buildings. The
simulation exercise described in the next chapter uses DOE2-1E to estimate the effects of
a lighting rebate program on 250 commercial buildings. We present one of those results
here because it illuminates the issue of the size of the interaction effect, as determined by
building size and choice of heating and cooling systems. The results are summarized in
Figure 4-6.

For each heating and cooling system modeled, a definite range exists for the magnitude of
the interaction effect. The widest range exists for the electrically heated buildings, while
the other buildings experience increases in gas or oil consumption due to increased heating

Figure 4-6. HVAC System Determines Magnitude of Interaction Effect
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loads which are not reflected in this graph. A few of the buildings incorporating electric
heating experienced net increases in electricity use. Because each heating and cooling
system demonstrates a different range of interaction effects, increasing total savings by

o

5 Sezgen, O.A., Huang, Y.J., “Lighting/HVAC interactions and their effects 6n annual and peak HVAC Requirements in
Commercial Buildings™, Proceedings from the 1994 ACEEE Sununer Study, 3:229-239
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4.1.6

say, 10%, may over or underestimate the interaction effect, depending on the distribution
of heating and cooling systems among participants. In the simulation, a cutoff of 40,000
square feet was used to distinguish small and large buildings, which determined available
HVAC systems, and building materials and characteristics.

The limited simulation results presented here suggest that the HVAC systems used in
larger buildings experience interaction effects on the order of 10%, and HVAC systems in
smaller buildings experience interaction effects on the order of 20%. A comprehensive
characterization of these effects would include data on the more prominent heating fuels
of oil and natural gas, and compare the costs of increased heating to the savings from
reduced cooling. The analysis here is meant only to illustrate that interaction effects can
introduce a bias into metering results, and that the potential exists to reduce this bias using
information about participating buildings and building energy consumption simulation
results. If the simulation results described in Figure 4-6 are similar to the actual
interaction effects, it seems that omission of all interaction effects can result in
underestimating annual savings by as much as 20% and inclusion of a flat estimate of
interaction effects of 16% (the average in our simulated sample of buildings) can under or
overestimate actual savings by around 10%. Furthermore, this over or under estimation
seems dependent on the characteristics of participating buildings. If HVAC system
information were collected for each building, it may be possible to reduce the uncertainty
around the size of the interaction effect.

Assessing the Bias and Precision of End-Use Metered Estimates of Savings

The previous sections identified three factors that affect the precision and bias of annual
savings estimates obtained using end-use metering: sample representativeness, metering
duration, and HVAC/lighting interaction effects. In this section we integrate these
uncertainties to estimate the overall precision and bias for a number of past metering
studies.

We summarize the uncertainties from each of these factors in Table 4-2. The three factors
involve a combination of systematic and stochastic uncertainties, which are difficult to
combine. Combining these factors is subject to some qualification because of the
relatively limited sources of information on which we can base our characterization. Our
limited sample prohibits a thorough assessment of each uncertainty. We also assume that
the factors shaping the uncertainties are independent. If the uncertainties were correlated,
the actual precision could be significantly less or more than estimated here.

We first present the results that integrate the stochastic biases into estimate of end-use
metering results. Then we present the range of possible results using the information on
systematic biases.

49




Chapter 4

Table 4-2. Uncertainties in End-Use Metering

Uncertainty Systematic or Stochastic Error Potential
Magnitude
Lack of sample Systematic; metered equipment may save 10%-300%
representativeness more or less than equipment in population
Limited metering duration Stochastic; due to nonseasonal factors, 10%-20%
Systematic; due to seasonal factors -5%-+5%

HVAC/lighting interactions

Systematic error with surrounding
uncertainty, dependent on building
characteristics

116% of metered

+ 9%

savings estimate

The basic results from the metering studies are given in Table 4-3. We are able only to
present the precision and estimated mean value for each study; an estimate of the bias is
incalculable without further information on the actual savings for program participants.

Table 4-3. Summary of Metering Results

Study Sample Population Duration of Mean Precision Std. Estimate description
Size Size Metering - estimate  est. by Dev. of (alternative
of savings eval. report Metered estimate)
(alt. est.) (alt. est.) Sample
NU Energy 30 6,100 2 weeks 0.79 of +54% +1.37  Single Ratio estimate
Saver pre, 2 track. db. using tracking database
Lélggg:;g weeks post ﬁ%ﬁn Cl around std. dev. of
(1991)
NEES 21 2,483 2-3weeks, 0.96 of +16.7% +0.44  Single ratio estimate using
Small C&I pre, 2-3 track. db tracking database 90% CI
(1991) weék s post B based on std. dev. of mean
NEES 23 4114 2-3 weeks 0.677 of +14.5% +0.28 ;Sinslz(l? rago t:;timalg ou}%irg
Energy pre, 2-3 track. db. racking database 90%
Initiative weeks post based on std. dev. of mean
(1991)
PG&E 16 4,454 0-15weeks 1.31 of *+65% +2.0 Single ratio estimate using
Express pre, 1-15 track. db.  (+39%) ggggg'g :3}3%:3 gg’;f; eg;
(1992) weeks post  (1.07 of (Dbl ratio estimate using
(usu. 2-4 track. db.) engineering models,
weeks) tracking database)
PG&E - 36 1,509 0-15weeks  0.66 of =11% £0.25  Single ratio estimate using
Customized pre, 1-15 track. db. (= 12%) ggggglg :g:gbggj gff’nﬁeg:]
(1992) weeks post  (0.75 of (Dbl ratio estimate using
(usu. 2-4 track. db.) engineering models,
weeks) tracking database)
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All five programs install efficient lighting equipment in commercial buildings, and were
evaluated using both tracking database information and end-use metering with spot-watt
meters and data loggers to collect run-time data. The studies described in Table 4-3
express program savings as a ratio of metered results to tracking database estimates for
the same sites. The precision of each estimate is based on a 90% confidence interval
around the standard deviation of the mean ratio values. Mean estimates of savings show
that metered estimates of savings range from 66% to 131% of tracking database estimates.
The precision around these mean estimates varies widely, from 11% to 65%. While the
precision is affected slightly by sample size differences across the programs, the wide
variations in precision are due mainly to the differences in standard deviations for the
samples. The PG&E programs supplemented the evaluations with engineering models of a
superset of the metered buildings, and then used this information to adjust the final
estimates of savings.

Using the results of our analysis on metering duration and precision, we can adjust the
estimated precision of the metered estimates to account for variability in hours of
operation over time. As demonstrated in Figure 4-4, if we know the duration of the run-
time metering, then we can estimate the imprecision inherent in the resulting estimate of
hours of operation. We make use of addition in quadrature to propagate an estimate of
the error from limited duration metering into the existing, metered estimates of savings in
Table 4-3. The sum of all pre and post-installation metering in each program is used to
determine the size of the adjustment in precision. The equation which we will use to
combine the precisions (known as addition in quadrature) is:

2 2
- (T
ld - W= z).
Where g is the product of x,...,z, dg is the uncertainty in g (expressed here as a standard
deviation), and 0x is the uncertainty in x. Combining the standard deviation of the metered

estimate with the average standard deviation for a hours of operation estimate of a given
duration, we obtain the results in Table 4-4.

We can also incorporate our estimate of potential bias due to HVAC interaction effects
into the metered estimates. Data from our simulation of commercial office buildings
indicate that interaction effects increase electricity savings so that total savings are 116% =
9% of metered savings. To adjust metered estimates, then, we need only to multiply the
metered estimate of savings by this 116% =+ 9% adjustment factor. We again use
quadrature to estimate the propagation of error through products. The results for the
estimates of savings and precision adjusted for limited duration hours of operation and
interaction effects are given in the final two columns of Table 4-4.
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Table 4-4. Adjustments and results of adjustments to metered estimates

Mean Std. Mean Std. dev Std. dev of [Mean of Std. dev. [Mean of Std. dev Increase in
Stud estimate dev. of |estimate of hours sample inter- of inter- |adjusted of standard
udy of metered|of hours  bias with hours [action action  |estimate adjusted deviation
metered sample |bias adjustment |effect effect estimate
sample
NUEnergy - 079 =137 1.03 +0.12 141 1.16 +0.09 (094 =164 20%
Saver Lighting
Rebate (1991)
NEES Small 096 =044 1.03 +0.1 047 |[1.16 +0.08 [1.16 +0.55 24%
C&l (1991)
NEES Energy 0.68 =+=0.28 1.03 =+=0.11 0.30 |[1.16 +0.09 |0.81 +0.35 25%
Initiative (1991)
PG&E Express 1.31 +2.00 104 =0.10 208 |[1.16 +0.09 [1.58 242 21%
(1992) :
PG&E 066 =+0.25 1.04 +0.10 0.27 {1.16 +0.09 [(0.80 +0.32 27%
Customized !
(1992) :

The combined effect of the imprecision of limited duration metering and imprecision of the
interaction effect increase the standard deviation of metering estimates by 23%, on
average. This increase in standard deviation corresponds to an increase of the 90%
confidence interval around the mean estimate as well. A comparison of the original
estimates of metering savings and precision to the adjusted estimates is given in Figure 4-
7. Note that we cannot present an absolute measure of bias because we do not know the
actual savings for each program. The mean savings in Figure 4-7 for each program is
again presented as a ratio of the metered estimate to the tracking database estimate. The
HVAC interaction effect increases the value of this ratio for the each program.

The preceding discussion has centered mainly on the precision of the metered estimates.
Now we turn to the issue of metering susceptibility to sampling bias. As described in
earlier in this chapter, selection of an unrepresentative sample, both in terms of site
selection as well as equipment selected for monitoring at each site, can result in a biased
estimate of savings. The size of the bias introduced depends on the characteristics of
installations for all customers, and the particular sites, building zones, and equlpment
metered in the evaluation.

Most metering studies use stratified sampling techniques to develop a sample of buildings
representative of the population of participants by both size and type. However, the
majority of metering studies only sample a few lighting circuits within each building. Thus
the typical metering study could introduce bias by not metering a representative sample of
zones within each building. It has been suggested by some critics of evaluation that
“convenience sampling”, where meters are installed on equipment in the most accessible
locations in a building, often occurs. We can estimate the probable effect of convenience
sampling with a brief thought experiment.
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Figure 4-7. Comparison of adjusted and unadjusted metering results
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Let us assume that a program is composed of identical lighting systems, installed in a
variety of building zones. Due to convenience sampling, a nonrepresentative sample of
these measures is metered to obtain estimates of hours of operation.  The
nonrepresentative sampling results in a bias in the estimate of hours of operation. The
equipment and sampling distributions, and the resulting bias in hours of operation are
displayed in Table 4-5.

Table 4-5. Example of potential bias in hours of operation from
nonrepresentative sample

Building Zone Mean Hours of % of Measures % of Metered
Operation Installed in Zone Sample in Zone

Hall 6,522 15% 20%
Lobby 4.645 10% 15%.
Sales Areas 5,388 - 15% 20%
Open Office 4,067 20% 30%
Other 3,706 - 10% 5%
Private Office 2,551 20% 10%
Storage Areas 2,282 5% 0%
Conference 1,946 5% 0%
Weighted Mean Hours 3,308 3,693 4,043
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4.2

The average annual hours of operation across all zones is 3,300 hours. The effective
average hours of operation for installed equipment is slightly higher, 3,693 hours per year.
The hypothesized effect of convenience sampling is to inflate the estimate of program
equipment hours of operation by about 10%, to 4,043 hours. This causes an concomitant
10% increase in the annual savings estimate.

This example does not suggest that all metering studies are subject to a bias of 10%. As
stated earlier, the bias can vary considerably. If the metered sample is not representative
of the program equipment in every respect, a bias may exist. Additional data on the
sampling schemes used and on the resulting metered data would be required to estimate
the true extent of this bias in metering studies.

Comparing Accuracy to the Costs of Data Collection

In this section, we integrate the previous analyses of the chapter to compare estimates of
savings from different metering methods with their data collection costs. Our estimates of
the performance of each method’s results are subject to several qualifications:

‘We only examine a handful of programs in this analysis. Thus, we describe each method’s
bias and precision in the context of these programs; we cannot definitively determine the
bias and precision of each evaluation method under all conditions. With a larger sample of
programs one could produce a more definitive estimate of each method’s abilities.

Our estimates of each method’s precision are based on variabilities in the program data
and ways in which the evaluation methods are used to calculate estimate precision. Our
estimates of the bias of metering results are dependent on the factors just mentioned, and
most importantly, on the representativeness of the metered sample. We have estimated
the range of the potential bias sternming from a nonrepresentative sample, but extensive
data on all participants and metered sites and equipment would be required to precisely
estimate the bias induced by a specific nonrepresentative sample.

In order to obtain estimates of evaluation data collection and data analysis costs, we
reviewed the DSM literature, and we sent a short questionnaire to five DSM evaluation
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