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Abstract

Modeling, Analysis, and Control of Demand Response Resources
by
Johanna L. Mathieu
Doctor of Philosophy in Engineering — Mechanical Engineering
University of California, Berkeley

Assistant Professor Duncan S. Callaway, Co-Chair
Professor Ashok J. Gadgil, Co-Chair

While the traditional goal of an electric power system has been to control supply to fulfill
demand, the demand-side can plan an active role in power systems via Demand Response
(DR), defined by the Department of Energy (DOE) as “a tariff or program established to
motivate changes in electric use by end-use customers in response to changes in the price of
electricity over time, or to give incentive payments designed to induce lower electricity use
at times of high market prices or when grid reliability is jeopardized” [29]. DR can provide a
variety of benefits including reducing peak electric loads when the power system is stressed
and fast timescale energy balancing. Therefore, DR can improve grid reliability and reduce
wholesale energy prices and their volatility.

This dissertation focuses on analyzing both recent and emerging DR paradigms. Recent
DR programs have focused on peak load reduction in commercial buildings and industrial
facilities (C&I facilities). We present methods for using 15-minute-interval electric load data,
commonly available from C&I facilities, to help building managers understand building en-
ergy consumption and ‘ask the right questions’ to discover opportunities for DR. Additionally,
we present a regression-based model of whole building electric load, i.e., a baseline model,
which allows us to quantify DR performance. We use this baseline model to understand the
performance of 38 C&I facilities participating in an automated dynamic pricing DR program
in California. In this program, facilities are expected to exhibit the same response each DR
event. We find that baseline model error makes it difficult to precisely quantify changes in
electricity consumption and understand if C&I facilities exhibit event-to-event variability in
their response to DR signals. Therefore, we present a method to compute baseline model
error and a metric to determine how much observed DR variability results from baseline
model error rather than real variability in response. We find that, in general, baseline model
error is large. Though some facilities exhibit real DR variability, most observed variability
results from baseline model error. In some cases, however, aggregations of C&I facilities
exhibit real DR variability, which could create challenges for power system operation. These
results have implications for DR program design and deployment.



Emerging DR paradigms focus on faster timescale DR. Here, we investigate methods to
coordinate aggregations of residential thermostatically controlled loads (TCLs), including air
conditioners and refrigerators, to manage frequency and energy imbalances in power systems.
We focus on opportunities to centrally control loads with high accuracy but low requirements
for sensing and communications infrastructure. Specifically, we compare cases when mea-
sured load state information (e.g., power consumption and temperature) is 1) available in
real time; 2) available, but not in real time; and 3) not available. We develop Markov Chain
models to describe the temperature state evolution of heterogeneous populations of TCLs,
and use Kalman filtering for both state and joint parameter/state estimation. We present
a look-ahead proportional controller to broadcast control signals to all TCLs, which always
remain in their temperature dead-band. Simulations indicate that it is possible to achieve
power tracking RMS errors in the range of 0.26-9.3% of steady state aggregated power con-
sumption. Results depend upon the information available for system identification, state
estimation, and control. We find that, depending upon the performance required, TCLs
may not need to provide state information to the central controller in real time or at all. We
also estimate the size of the TCL potential resource; potential revenue from participation in
markets; and break-even costs associated with deploying DR-enabling technologies. We find
that current TCL energy storage capacity in California is 8~11 GWh, with refrigerators con-
tributing the most. Annual revenues from participation in regulation vary from $10 to $220
per TCL per year depending upon the type of TCL and climate zone, while load following
and arbitrage revenues are more modest at $2 to $35 per TCL per year. These results lead
to a number of policy recommendations that will make it easier to engage residential loads
in fast timescale DR.
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Chapter 1

Introduction

The traditional goal of an electric power system has been to control the supply-side
to fulfill demand; however, the demand-side can plan an active role in power systems via
Demand Response (DR), defined by the Department of Energy (DOE) as “a tariff or program
established to motivate changes in electric use by end-use customers in response to changes
in the price of electricity over time, or to give incentive payments designed to induce lower
electricity use at times of high market prices or when grid reliability is jeopardized” [29].
It is important to note that DR is not energy efficiency. Energy efficiency refers to actions
taken to permanently reduce the energy consumption of goods and services, for example
insulating a home, switching to more efficient appliances, and tuning a commercial heating,
air conditioning, and ventilation (HVAC) system. DR entails shifting electricity use, for
example, off peak, resulting in no net energy savings or shedding (i.e., curtailing) electricity
use temporarily, for example, during peak hours, resulting in net energy savings but only for
a small portion of the hours in a year.

DR programs can take a number of forms and provide a range of benefits to power systems
29, 9, 125, 2, 46]. Some examples are as follows:

e DR can reduce wholesale energy prices and their volatility. In systems without DR,
demand is inelastic. Additionally, when a power system nears its generation capacity,
supply becomes increasingly inelastic. The result is extreme wholesale electricity price
volatility on days when system demand is high [8, 78].

e DR can reduce the need for power system infrastructure expansion. Power systems
are sized so that they can provide electricity on the peak hour of the year. Through
DR, the peak is reduced and new investments in power plants and transmission can be
delayed.

e DR can limit the use of peaking power plants, i.e., peakers. Peakers are only used a
small number of hours per year, and have high marginal costs [51] and are generally
less efficient than other plants [39].
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e DR can improve grid reliability [100]. For example, DR can provide emergency response
to grid contingencies via ancillary services such as spinning reserve [42].

e DR can provide power system flexibility. Like generators and energy storage devices,
it can be viewed as a resource that can ‘provide energy’ (via demand reductions) or
provide services (via demand reductions and increases) to the grid.

e DR may be able to provide fast timescale energy balancing, especially important in
power systems with high penetrations of intermittent renewable resources like wind
and solar power [100, 19].

The goal of this work is to better understand the capabilities and constraints of DR
resources. Using tools from statistics, controls, and optimization, we present methods to
1) model commercial buildings and industrial facilities (C&I facilities) and compute DR
performance; 2) understand model error and quantify variability in responses to open-loop
DR signals; 3) aggregate and control residential thermostatically controlled loads (TCLs)—
such as air conditioners, heat pumps, electric water heaters, and refrigerators—to participate
in fast timescale DR; and 4) estimate the resource size, revenues, and costs associated with
TCL participation in fast timescale DR. The results of this work have implications for DR
program design and development, and energy policy.

In the following sections, we present a brief background on DR and detail different types
of DR. Then, we describe the organization of the rest of the dissertation. Detailed literature
reviews on each research topic are presented within each chapter.

1.1 Background on DR

A brief history of DR is given in [22]. In summary, DR is not a new concept, but has been
discussed since the deployment of the first electricity grids in the 1890s, especially with
respect to time-differentiated electricity rates. Other DR concepts such as interruptible load
management (ILM), mainly for industrial customers, and direct load control (DLC), mainly
for residential customers, became popular in the 1970s. Around the same time, international
energy crises lead to increased interest in demand side management and integrated resource
planning, in which DR can play a part.

In the 1990s, many electricity systems in the U.S. started the process of deregula-
tion/restructuring, moving from vertical integration to utility divestment in generation re-
sources and competitive wholesale electricity markets. However, as the 2000-2001 Califor-
nia Energy Crisis showed, a competitive wholesale electricity market with an unresponsive
demand-side can lead to problems of generator market power [8]. This spurred further inter-
est in DR, for example, in California the Lawrence Berkeley National Laboratory (LBNL)
Demand Response Research Center (DRRC) began research and pilot projects in 2004.

Many recent policies have aimed to eliminate barriers to DR including:
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e 2005 Energy Policy Act, which eliminated some barriers for DR entry in energy, ca-
pacity, and ancillary services markets [27]

e Federal Energy Regulatory Commission (FERC) Order #719, which permits aggrega-
tors to bid DR on behalf of electricity customers [48]

e FERC Order #745, which says that DR must be compensated at the Locational
Marginal Price (LMP) [49] (which is currently being challenged [80])

o FERC Order#755, which says that resources, including DR, must be paid for regulation
on the basis of how well they can provide the service [50], e.g., faster ramping resources
must be paid more

Increased investments in the ‘smart grid’ have lead to many new opportunities for DR.
In fact, five out of the ten meanings of the term ‘smart grid’ listed by Morgan et al. [97]
directly relate to DR: meters that can be read automatically, meters that can communicate
to customers, time of day and time of use meters, control of customer loads, and selective
load control. This new communications, sensing, and control infrastructure enables and
enhances notification of DR signals and changing electricity prices, and customer responses
to these signals/prices.

1.2 Types of DR

As the DOE DR definition explains, DR can take two main forms: time-differentiated elec-
tricity rates or incentive payments. Each of these forms has a large number of variants. In
this section, we summarize the many types of DR.

1.2.1 Time-differentiated electricity rates

Time differentiated electricity rates, also known as price based DR programs [2] and time
based DR programs, can be split into time of use (TOU) electricity rates and dynamic
electricity rates. TOU rates are known to customers well in advance (i.e., months ahead)
and encourage customers to shift electricity use to times when demand is usually low, for
example, nighttime. The hours in a days are divided into some number of categories, for
example, off-peak, part-peak, and peak, and electricity in each category is priced differently.
Additionally, prices may change in different seasons. This is in contrast with the ‘flat rates’
normally seen by residential customers, in which the price of electricity is fixed throughout
the day and year. In California, most large commercial and industrial customers have been
on TOU rates for decades.

Dynamic electricity rates are not known to customers well in advance. For example, they
may be published day ahead or day of, and high prices are used to signify high expected
system load (often resulting from high or low expected outdoor air temperature). Dynamic
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pricing can be further split into Critical Peak Pricing (CPP) and Real Time Pricing (RTP).
In CPP programs, DR events are called on a small fraction of the days in a year and on those
days electric rates are raised during peak hours to encourage both shifting and shedding. In
California, all large commercial and industrial customers (greater than 200 kW peak) are
defaulted to a CPP tariff, for example, Pacific Gas & Electric Company’s (PG&E) Peak Day
Pricing (PDP) tariff [106].

In RTP programs, electricity prices may change hour-to-hour and day-to-day Many
economists advocate RTP tied directly to wholesale prices [9, 8, 12]. However, prices could
also be a function of the value and cost of electricity in different time periods [29], which
implies that they could encapsulate information other than wholesale prices. For instance,
retail electricity prices could be higher during peak times (e.g., two times the wholesale price)
to encourage power use reductions. Currently, RTP rates are uncommon. For example, in
California only one utility offers an opt-in RTP tariff for large industrial customers, Southern
California Edison (SCE) [114]. SCE uses a look-up table to determine next-day prices based
on the next-day forecasted high temperature in downtown Los Angeles.

1.2.2 Incentive payements

As mentioned above, ILM and DLC programs have existed since the 1970s. In these pro-
grams, customers allow the program sponsor (e.g., utility, aggregator, etc.) to control their
loads within some prior agreed-upon constraints in exchange for credits and/or incentive
payments. Some work as been done to develop strategies to control large industrial plants
through ILM [61, 25] and residential TCLs through DLC [11, 99] for peak load management.

Another way to achieve DR is to allow loads to participate in wholesale electricity mar-
kets. In Demand Bidding Programs (DBP) and Capacity Bidding Programs (CBP), loads
or aggregations of loads offer demand reductions via price/quantity bids into energy and ca-
pacity markets. If their bids are accepted they must provide demand reductions at specified
times. In some cases, loads can also participate in ancillary services markets. For example,
in the Participating Load Pilot (PLP) program conducted by PG&E in 2009, C&I facili-
ties submitted offers via price/quantity bids into the day-ahead non-spinning reserve market
[71]. These bids were optimized by the California Independent System Operator (CAISO)
together with supply-side bids/offers. Though treating loads symmetrically with generators
in electricity markets is attractive, in practice, issues arise because demand bids are always
relative to a baseline and baseline models are inaccurate. These issues will be detailed in
Chapters 2 and 3.

1.2.3 Recent versus emerging DR

Most recent DR programs have focused on recruiting large C&I facilities rather than resi-
dential customers, which need to be aggregated together to achieve a measurable response.
Moreover, large customers generally have energy management and control systems (EMCS)
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Table 1.1: Recent vs. emerging DR.

Recent DR

Emerging DR

Type of customer

Program goal

Large commercial buildings and indus-
trial facilities

Peak load shedding, usually on the
hottest summer afternoons

Small commercial and residential build-
ings, and individual loads

Shedding and shifting any day, any time

Actuation Single DR signal: Continuous DR signal:
e manual or automated e automated
e centralized source e centralized/decentralized source
e open-loop control e feedback control

Timescale Day-ahead to hour-ahead Hour-ahead to real-time

which enable some level of DR automation. However, there are many advantages to engaging
residential customers in DR (detailed in Chapter 5) and so we are beginning to see more
work in this field. Table 1.1 details recent versus emerging DR programs. Emerging DR
programs have expanded program goals, beyond peak load shedding. Moreover, through
feedback control, emerging DR focuses on not only initiating a response, but also controlling
the response.

Another difference between recent and emerging DR is the timescale. In recent DR
programs, DR events are usually called day-ahead, e.g., via day-ahead prices (Figure 1.1).
Emerging DR programs have much shorter timescales. For example, when loads participate
in ancillary services markets they must respond to sub-hourly signals like 5-minute load
following signals or 4-second automatic generation control (i.e., regulation) signals. At faster
timescales, it is less practical to have ‘a human in the loop,” so emerging DR proposals involve
more automation and, possibly, DLC by the load manager. We present our DLC scheme in
Chapter 4.

1.3 Organization of the Dissertation

This dissertation consists of four main chapters. Chapter 2 and 3 focus on analyzing the
behavior of C&I facilities participating in recent DR programs, while Chapters 4 and 5 focus
on emerging DR paradigms.

In Chapter 2, we present methods for using 15-minute-interval electric load data, com-
monly available from C&I facilities, to help building managers understand building energy
consumption and ‘ask the right questions’ to discover opportunities for DR. Additionally,
we present a regression-based model of whole building electric load, i.e., a baseline model,
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Figure 1.1: DR timescales.

which allows us to quantify DR performance. In Chapter 3, we use this baseline model
to understand the performance of 38 C&I facilities participating in an automated dynamic
pricing DR program in California. In this program, facilities are expected to exhibit the
same response each DR event. However, baseline model error makes it difficult to precisely
quantify changes in electricity consumption and understand if C&I facilities exhibit event-to-
event variability in their response to DR signals. Therefore, we present a method to compute
baseline model error and a metric to determine how much observed DR variability results
from baseline model error rather than real variability in response.

In Chapter 4, we investigate methods to coordinate aggregations of residential TCLs to
manage frequency and energy imbalances in power systems. We focus on opportunities to
centrally control loads with high accuracy but low requirements for sensing and communi-
cations infrastructure. Specifically, we compare cases when measured load state information
(e.g., power consumption and temperature) is available in real time; available, but not in real
time; and not available. We present a Markov Chain model of load aggregations, describe
how we applied Kalman filtering techniques for both state estimation and joint parameter
and state estimation, and present a look-ahead proportional controller. We compare the
results of our model-estimator-controller system to that of a simple proportional controller
to demonstrate the value of the approach. In Chapter 5, we estimate the size of the TCL
resource, potential revenue from participation in markets, and break-even costs associated
with deploying DR-enabling technologies.



Chapter 2

Commercial Building Load Shapes &
Baseline Models

This chapter presents methods for using 15-minute interval electric load data, commonly
available from C&I facilities, to help building managers understand building energy con-
sumption and ‘ask the right questions’ to discover opportunities for DR. Additionally, we
present a regression-based model of whole building electric load, i.e., a baseline model, which
allows us to quantify DR performance. We focus on recent DR programs. This chapter is
largely based on [92].!

2.1 Chapter Introduction

Building managers often look for opportunities for energy cost savings through energy effi-
ciency, electricity waste elimination (through anomoly detection, changing operational sched-
ules, etc.); peak load management; and participation in DR tariffs and programs, which in-
centivize reduced electricity consumption during peak hours or when grid reliability is jeop-
ardized. Analysis of 15-minute interval whole building electric load data is a good starting
point for discovering opportunities to reduce energy costs through building energy manage-
ment. These data are usually available to C&I customers. For example, PG&E collects
15-minute interval electric load data from all large C&I facilities (i.e., facilities with a maxi-
mum demand of more than 200 kW for three consecutive months) in its service territory. It
uses these data to compute both energy costs and demand charges. Despite their availability,
these data are not commonly used by building managers because the raw data are difficult
to process and interpret. Therefore, more effective methods are needed to translate electric
load data into actionable information.

1©2011 IEEE. With permission from my co-authors: Phillip Price, Sila Kiliccote, and Mary Ann Piette.
“Quantifying Changes in Building Electricity Use, With Application to Demand Response.” IEEE Transac-
tions on Smart Grid, Sept 2011.
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In this chapter, we present methods for analyzing 15-minute interval electric load data
from C&I facilities. Specifically, we describe graphical representations of electric load data,
a regression-based electricity load model, and the definition of various parameters that char-
acterize electric load as a function of time (i.e., the “load shape”) and DR behavior. The
technical contributions are as follows:

e We describe new ways of visualizing electric load data;
e we introduce a time-of-week indicator variable into regression models of electric load;

e we avoid the use of change-point models, but still capture a nonlinear relationship be-
tween outdoor air temperature and load, by dividing temperatures into many intervals
and then fitting a piecewise linear and continuous temperature dependence;

e we define new parameters to characterize electric load shapes and DR behavior;
e and we apply the modeling methods to evaluate DR effectiveness.

In Figure 2.1, we present a framework for using electric load data to assess opportunities
for DR, and evaluate the effectiveness of the DR strategies that were implemented. Tradition-
ally, building managers develop DR strategies after only minimal analysis of their load data.
They primarily work with their utility or aggregator to adapt DR strategies, such as those
in [98], that have worked well in other buildings. Therefore, they may miss building-specific
DR opportunities or may implement DR strategies that are ineffective in their buildings.
Building managers do not typically approach DR strategy development systematically, in
part because there are too few DR methods and tools [47].

Therefore, we propose that building managers use tools incorporating data analysis meth-
ods such as load shapes, standardized load parameters, parameter plots, and load prediction
to analyze their facilities’ current and historic load shape. These methods are described in
Sections 2.3 and 2.4. With knowledge resulting from this analysis and knowledge of DR
strategies that have worked well in other buildings, a building manager is able to develop
a list of informed questions that help direct an evaluation of building operations, controls,
systems, and end-uses. This process is explained in Section 2.5. The results of the evaluation
allow the building manager to identify potential DR strategies that are specific to his or her
building.

The effectiveness of DR strategies that have been executed is determined using load
prediction models to estimate what load would have been on a DR event day if a DR
event had not occurred (a literature review is presented in Section 2.4.1). There are few
tools available to building managers that automate load prediction. Also, additional data
analysis methods could enhance the interpretation of load prediction results. Therefore, we
propose that building managers use tools incorporating load prediction, DR residuals, and
DR parameters to evaluate DR effectiveness. These methods are detailed in Sections 2.4 and
2.6.
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Figure 2.1: Framework to assess and evaluate DR opportunities. (©2011 IEEE

As Figure 2.1 shows, developing DR strategies should be an iterative process: identify
a DR opportunity; implement and evaluate it; and, if desired, modify it to improve the
response or move on to the next opportunity. Improving a building’s DR strategies benefits
the building by reducing its energy costs. It also benefits the grid [60]. Of course, these
benefits must be weighed against DR costs [70].

A similar framework to that in Figure 2.1 could be applied to assess opportunities for
any form of building energy management, but we focus on DR because more DR estimation
tools and methods are needed [47], and the use of DR is expanding. In many utility service
territories, C&I facilities are called to shed or shift load on hot summer afternoons when the
electricity grid is stressed with high loads due to residential and commercial cooling.

In the future, facilities may be dispatched at any time, especially those participating in
wholesale energy, capacity, and ancillary service markets (such as spinning reserve [42], non-
spinning reserve [71], and regulation/load following [19]), and as DR is used to support the
integration of intermittent renewable energy resources [19, 124]. Therefore, new analytical
methods are needed to assess opportunities for and evaluate the effectiveness of “any day,
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Table 2.1: Facilities used in examples. (©)2011 IEEE

Facility Type Location Weather Peak Load Peak Load
Station(s) Load* Factor* Intensity*
(kW) (W/m?)
County Bldg Office Martinez Concord 543 0.33 44.6
Furniture Store  Retail East Palo Alio L0 A&y, 0.50 48.2
Hayward
Bakery Industrial Oakland Oakland 620 0.61 66.1

*Computed for May - Sept 2008, with 15-minute-interval data.

any time” DR.

2.2 Data Sources

2.2.1 Electric load data

We use 15-minute interval whole building electric load data from 38 large C&I facilities
(peak demand >200 kW for 3 consecutive months) in California that participated in PG&E’s
Automated CPP Program between 2006 and 2009. Table 2.1 shows the C&I facilities used
in examples throughout this chapter. Appendix A.1 gives detailed information on each of
the facilities. PG&E called CPP DR events on up to 12 summer business days (non-holiday,
weekdays) per year when system-wide load was expected to be high, which, in California,
usually occurs on hot summer days as a result of commercial and residential air conditioning.
On DR days, electricity prices were raised to three times the normal price from 12 to 3 pm
(moderate price period), and five times the normal price from 3 to 6 pm (high price period).
In exchange for participating in the program, facilities paid lower energy prices on non-DR
days. All 38 facilities used the OpenADR Communication Specification [107] to receive
DR event notifications, which were provided by 3 pm the business day before the event.
Each facility implemented a different set of pre-programmed DR strategies and executed
the same strategies from event-to-event. Strategies included changes to HVAC system, light
dimming/switching, and industrial process shedding/shifting [98].

2.2.2 Temperature data

From NOAA [101], we acquired hourly outdoor air temperature data for each facility from
the nearest weather station. Unfortunately, some of the temperature data are spotty. We
linearly interpolated the data to assign an approximate temperature to every 15-minute
interval, though when six or more hours of data are missing we do not interpolate. In some
cases, when the data for a station were particularly spotty, we have filled the holes with data
from another nearby station. Temperature data for the aggregate populations were generated
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by weighting and averaging data from the individual stations. Weights are determined by the
number of facilities in the aggregate population associated with each station. For example,
if N facilities are associated with Station 1, which measured temperatures T} (t), and Nj
facilities are associated with Station 2, which measured temperature T5(t), and so on, then
aggregate temperature, T,4,, at time step ¢ is computed as follows:

M
Tagg(t) = —Z,leNzill(t) , (2.1)
Zi:l Ni
where M is the total number of weather stations associated with facilities in the aggregate
population. Table 2.1 shows the weather station(s) from which data were acquired for each of
the facilities used in the examples. Detailed information about each of the weather stations
and a data interpolation summary are given in Appendix A.1.

2.3 Visualizing Electric Load Data

It is possible to learn a significant amount about the performance of a building over time,
and as compared to other buildings, by plotting electric load data in various ways [55,
54, 56]. Analyzing electric load data graphically can lead to more insights into building
characteristics, operations, and use than can be gained by only analyzing summary statistics.
In this section, we describe several ways of visualizing electric load data. We first plot time
series data and describe what can be learned from these plots. We then define and plot a
small set of parameters that are useful for describing load variation from one day to the next.
These “parameter plots” may help identify aspects of load shapes more easily.

2.3.1 Load shapes

Figure 2.2 shows electric load versus time for the three example facilities. Striking differences
between facilities are immediately apparent including differences in operating hours, daily
load shape regularity, the magnitude of daytime versus nighttime loads, and the variation in
load from one 15-minute-interval to the next (i.e., the smoothness of the load shape). In ad-
dition, day-to-day changes within facilities can be observed. For instance, all of the facilities
have higher loads in the second week shown, likely due to higher outdoor air temperatures
(and therefore more need for cooling) during the second week.

Many building load shapes share some features (Figure 2.3). Most buildings have a clear
base load, attained during the night, below which the power consumption rarely falls. In the
early morning, the HVAC system switches from nighttime to daytime operation, and, if the
building interior warmed/cooled overnight, the HVAC system may turn on at high power to
cool/warm the building. This results in a short-lived load spike called the morning start-
up. As the morning continues, load increases with increased occupancy and, in the cooling
season, with increased outdoor air temperature. At some point the building reaches its peak
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Figure 2.2: Electric load versus time. (©2011 IEEE

load for the day. Peak loads can be computed over any time interval (e.g., daily, seasonally,
yearly), and are generally more variable than base loads. In the afternoon or evening, the
HVAC system switches back to nighttime operation and the power consumption quickly
decreases, a phenomenon called the evening setback. In some buildings, some excess over the
base load persists into the evening leading to an evening shoulder.

Plotting time series load data and/or overlaying data from different time periods can be
useful for noticing and characterizing changes in load shapes and their features. However,
there are limitations to this approach:

1. For most facilities, energy consumption is a function of weather; however, we are gener-
ally interested in understanding changes in energy consumption that are not caused by
weather variation. To deal with this issue, we present a method for weather-normalizing
load data in Section 2.4.2.

2. Some phenomena may be difficult to recognize in plots of time series load data. For
instance, noticing a tendency for load to increase gradually over a long period might
be difficult, since this small trend will often be superimposed on seasonal variation and
other features. Overlaying data separated by a year may reveal that load is higher now
than a year ago, but will not reveal whether the change was gradual or abrupt.

3. Graphical approaches to understanding and comparing load shapes are useful only
when people are able to devote time and effort to using them. Automated methods
can potentially reduce this effort, though fully automating the analysis of time series
data such as those in Figure 2.2 is a daunting task.
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Figure 2.3: Load shape features and parameters. (©2011 [EEE

Table 2.2: Load shape parameter definitions. (©2011 IEEE
Load Shape Parameter Definition

Near-Base Load (kW) 2.5 percentile of daily load.

Near-Peak Load (kW) 97.5"" percentile of daily load.

High-Load Duration (hrs) Duration for which load is closer to near-peak than near-base load.

Rise Time (hrs) Duration for load to go from near-base load to start of high-load period.
Fall Time (hrs) Duration for load to go from end of high-load period to near-base load.

2.3.2 Load shape parameters

As with any time series, load data invite the calculation of a wide variety of summary
statistics. It is useful to distinguish between two kinds of summary statistics: those that
summarize various aspects of the load and its variability, and those that summarize the
amount of load or load variability that is not related to weather, i.e., weather-normalized
summary statistics. In this section, we consider summary statistics that are not weather-
normalized.

We recommend five parameters that are useful for describing load shapes (Figure 2.3 and
Table 2.2). The value of each of the parameters can be calculated for each day and these
values can be summarized (e.g., mean and standard deviation of each parameter).

We define the “near-base” and “near-peak” load since the base and peak load summarize
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extreme events, which may differ qualitatively from events that are actually of interest. For
instance, the power consumption during a power outage should not be considered a building’s
base load. As for the peak load, consider two buildings with the same power consumption
profile that each have power usage spike for a full 15 minutes. The first building’s spike
occurs during a single 15-minute-interval, but the second building’s spike is spread across
two 15-minute-intervals. The measured peak load for the first building will be higher than
that of the second building despite that the fact that they both consumed the same amount
of power for the same amount of time. To help deal with these issues, we recommend using
the 2.5 and 97.5'" percentile of daily load instead of the minimum and maximum.

We define three time intervals, high-load duration, rise time, and fall time, to characterize
how the load changes throughout the day. In practice, it is difficult to find definitions of
these time intervals that yield consistent, easily interpretable results. The definitions in
Table 2.2 work well if the load shape is something like Figure 2.3, but it do not produce
useful numbers in some cases, such as for load shapes that do not vary substantially over
time or load shapes that have multiple extreme maxima and minima during each day.

2.3.3 Parameter plots

Plotting the parameters defined in Table 2.2 can help us to recognize phenomena that we
would be likely to miss if we only analyze plots of 15-minute-interval load data. For example,
in Figure 2.4, we plot each facility’s near-base and near-peak load for weekdays from May
to Sept 2008. Examining these plots reveals several things:

e the office building’s and furniture store’s near-base loads were relatively constant, while
the bakery’s near-base load varied day-to-day;

e the bakery’s near-peak load increased over the course of the summer; and

e the bakery’s near-peak load did not vary significantly day-to-day, unlike that of the
office building and furniture store.

While all of this information could be obtained from a plot of 15-minute-interval load data,
the many layers of information present in such a plot make it very difficult to identify these
trends.

Figure 2.5 shows an example of what one can learn from plotting a facility’s high-load
duration over time. Analyzing the plot we learn that, in early 2008, the furniture store’s
operating hours were extended by more than an hour each day, and became more uniform
day-to-day. On an initial inspection of the store’s 15-minute-interval load data we did not
notice this change (though in retrospect it is visible). In comparison, when we inspected
Figure 2.5, we immediately noticed the change and when it occurred. More examples of
useful parameter plots can be found in [108].
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Figure 2.4: Near-base (lower curve) and near-peak load (upper curve) for each weekday
from May to Sept 2008. Dotted and dashed lines show the 15, 50", and 85" percentiles of
the near-peak load. Significant dips in load for the office building and bakery are holidays
(Memorial Day, Independence Day, and Labor Day). ©2011 IEEE
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Figure 2.5: High-load duration for the furniture store for each weekday from Jan 2007 to
Oct 2008. (©2011 IEEE

2.4 Predicting Electric Loads

In this chapter, we focus exclusively on understanding past electric load. We use statis-
tical models that quantify the electric load as a function of time-of-week and outdoor air
temperature. Following standard statistical terminology, we call the output of the model
a “prediction” of the electric load, even if the events occurred in the past. Predictions of
future load are referred to as “forecasts.”

Electric load prediction is useful for comparing how a facility is currently performing to
how it has performed in the past. Specifically, load prediction is used to:

e understand changes in a facility’s electricity consumption patterns from one time period
to the next;

e quantify the effectiveness of DR strategies;
e quantify the effectiveness of energy efficiency retrofits; and

e perform anomoly detection (by finding times when the building is not behaving as it
has behaved in the past).

In each case, the predicted load is compared to the actual load. Importantly, the predicted
load is computed under the same key conditions as those that lead to the actual load. For
example, using actual weather data to compute the predicted load allows us to ‘weather-
normalize’ the prediction; the remaining differences between the predicted and actual load
are not weather-dependent.

Weather-normalization is especially important for facilities with significant temperature-
dependent loads (e.g., cooling loads, electric heating loads). For example, in Figure 2.6
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Figure 2.6: The importance of weather-normalization. The top plots compare actual and
predicted load for each year, the bottom left plot compares actual load data across years,
and the bottom right plot shows weather-normalized predictions. ‘2009 model / 2006 temps’
refers to a load prediction made using a baseline model created with 2009 load data and
2006 outdoor air temperature data, etc. (©2011 IEEE

we show the furniture store’s actual and predicted load for three days in July in 2006 and
2009. Predictions are computed using the load prediction method that will be introduced
in Section 2.4.2. To give a sense for model accuracy, the top plots compare actual and
predicted load for each year. The bottom left plot compares actual load data across years.
From this plot, we learn that the facility used significantly less energy in 2009 than 2006.
However, we would like to know how much of the difference is due to changes in equipment,
operations, and use, and how much is simply due to weather. The bottom right plot shows
weather-normalized predictions. Specifically, predictions from 2006 and 2009 are shown, as
well as predictions that use the 2009 model but 2006 temperatures. Comparing the gray and
thin black lines we can see the portion of the savings not due to weather, while comparing
the thin and thick black lines we can see the portion of savings due to weather. Some,
though not all, of the difference in daytime load is due to weather, while almost none of the
difference in nighttime load is due to weather.

We next present a brief review of existing load prediction methods. Then, we propose a
load prediction method that uses a time-of-week indicator variable and a piecewise linear and
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continuous outdoor air temperature dependence. In addition, we briefly discuss the sources
of error associated with load prediction.

2.4.1 Existing methods for load prediction

Electric utilities use simple methods to predict the electric loads of facilities that participate
in DR programs. The predictions are called baselines because they provide a baseline against
which demand reductions are computed. California electric utilities use methods such as
averaging the electric use profiles of the three days with the highest energy usage out of
the last ten business days, or averaging the electric use profiles of the last ten business days
(28, 52]. To adjust for weather and other conditions on DR days, predictions are sometimes
multiplied by a morning adjustment factor: if a building is using, say, 10% more electricity
on the morning of a DR day than on other mornings, then its predicted afternoon load is
increased by 10% as well. Unfortunately, this approach has a serious problem: if a facility
shifts some of its load to the morning on a DR day, the result of the morning adjustment is
an overestimate of the amount of energy the building would have consumed during the DR
period. Essentially the building is credited twice for the same energy shift: once by using
less energy than it would have if it did not participate in DR, and once by overestimating
the amount of energy that it would have used.

More advanced load prediction methods have been developed for a variety of applications
including estimating the effectiveness of energy efficiency retrofits and forecasting utility-
scale electric loads. Claridge [26] discusses many approaches for using historical electric
load data to model the electricity consumption of C&l facilities including linear regression
models, calibrated simulations, Fourier series models, and neural network models (e.g., [65]).
Granderson et al. [53] also describe several other methods for residential load prediction
including non-linear models such as locally-weighted regressions, “bin” models in which load
predictions are based on the average load for time periods that share the same bin as current
conditions (e.g., weather and time-of-day), and nearest-neighbor models in which the current
load is predicted to be the same as it was when previous conditions were closest to current
conditions. Taylor et al. [120] compare several methods for forecasting utility-scale electric
loads including exponential smoothing models, ARIMA models, neural network models (e.g.,
[104]), and regression with principal component analysis.

Here, we use linear regression models because — when constructed appropriately — they
provide a good fit to load data in most buildings, their results are easy to interpret, they are
easy to modify, and they present negligible computational burden. In addition, regression
methods have performed well when compared against other load prediction methods [77,
57, 110]. In 1986, Fels [45] introduced the PRInceton Scorekeeping Method, or PRISM, a
regression-based load prediction method to standardize the measurement of energy conserva-
tion savings. Heating degree-days and monthly electricity consumption are related through a
simple piecewise linear regression model. Other innovative regression-based load prediction
methods followed including methods using finer resolution (e.g., daily and hourly) electric



CHAPTER 2. COMMERCIAL BUILDING LOAD SHAPES & BASELINE MODELS 19

load data, change-point models [74], and multiple linear regressions [67, 66]. Kissock et al. [74]
developed regression models specifically for commercial buildings, while Kissock and Eger
[73] developed models for industrial buildings.

2.4.2 Load prediction method

We have developed a linear regression-based load prediction method that includes two novel
features: a time-of-week indicator variable, and a piecewise linear and continuous outdoor
air temperature dependence derived without the use of a change-point model or assumptions
about when structural changes occur. Both of these of these features will be discussed in
depth at the end of this section, after the load prediction method is introduced.

A facility’s electric load is usually a function of both temperature and time-of-week, as
shown in Figures 2.7 and 2.8.2 Therefore, we consider both temperature and time-of-week
in the regression model. Our method is as follows: we divide a week (Monday-Friday)
into 15-minute-intervals (indexed by i), e.g., the first interval is from midnight to 12:15 on
Monday morning, the second interval is from 12:15 to 12:30, and so on. A different regression
coefficient for each time-of-week, «;, allows each time-of-week to have a different predicted
load. Additionally, we expect demand to be a piecewise linear and continuous function of
outdoor air temperature, T, as described in [45, 74], for example, like that in Figure 2.9.
When the outdoor temperature is high, cooling load will increase with temperature, and
when the outdoor temperature is low, heating load will increase as temperature decreases
(even when electricity is not used as the heat source electricity will be required to run
pumps and fans when the building is heating). For some range of moderate temperatures,
the load may be insensitive to temperature because neither cooling nor heating is needed
(the temperature is said to be in the “dead-band”). Sometimes the outdoor air temperature
may be so high that the cooling capacity cannot achieve the desired indoor temperature set
point, at which point load is at the maximum possible AC load (maxed-out). Additional
change-points are also possible (e.g., in facilities with two chillers, the second of which only
turns on when the first is operating near capacity).

This nonlinear temperature effect can be modeled with a piecewise linear and continuous
temperature-dependent load model. For each facility, we divide the outdoor air temperatures
experienced by that facility into six equally-sized temperature intervals.® For example, if the
minimum temperature experienced by the facility were 50°F and the maximum temperature
experienced by the facility were 110°F, the temperature intervals would be 50-60°F, 60-70°F,

2Temperature and time-of-week are correlated: the highest temperatures generally occur in the afternoon
and the lowest temperatures generally occur at night. Therefore, both time-of-week and temperature effects
are superposed on each plot, and Figure 2.7 shows total load versus temperature, not temperature-dependent
load versus temperature.

3 Any number of intervals could be used, but we recommend using at least twice the expected number
of change-points, but not so many as to cause over-fitting problems. Through trial and error, six bins were
found to allow for enough change points and not cause over-fitting problems. This value is not optimized.
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Figure 2.7: Scatter plot of load versus temperature, including both occupied mode load
(black) and unoccupied mode load (gray). Data shown are from May-Sept 2008. (©2011
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Table 2.3: Example of component temperature computation, for By = 10, By = 20, ...B; = 50
(in arbitrary temperature units). (©2011 IEEE

T Tc,l Tc,2 Tc,S Tc,4 Tc,5 Tc.,6
2 2 0 0 0 0 0

18 | 10 8 0 0 0
32| 10 10 10 2 0
47 | 10 10 10 10 7
58 | 10 10 10 10 10

o O oo

70-80°F, 80-90°F, 90-100°F, and 100-110°F. A temperature parameter, 3; with j = 1...6,
is assigned to each outdoor air temperature interval.

To achieve piecewise linearity and continuity, the outside air temperature at time ¢
(which occurs in time-of-week interval i), T'(¢;), is broken into six component temperatures,
T.;(t;) with j = 1...6. Each T ;(¢;) is multiplied by §; and then summed to determine the
temperature-dependent load. Let By (k = 1...5) be the bounds of the temperature intervals.
Component temperatures are computed using the following algorithm:

1. Let By for k = 1...5 be the interior bounds of the temperature intervals.

2. T > By, then T.; = B;. Otherwise, T,.; =T and T ,,, = 0 for m=2...6 and algorithm
is ended.

3. Forn =2.4,if T > B,, then T.,, = B, — B,_y. Otherwise, 1., =T — B,_; and
Tem =0 for m = (n+ 1)...6 and algorithm is ended.

4. If T > B5, then TC,5 = By — B, and TC,G =T — Bs.

An example computation is shown in Table 2.3.
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The temperature parameters [3; are only used when a facility is operating in occupied
mode since one would expect a facility’s response to temperature would change at night.
The start and end of the occupied mode are manually determined by looking at average load
profiles on non-DR days. In Figures 2.7 and 2.8, data from occupied mode and unoccupied
mode are differentiated (the bakery is never in unoccupied mode on weekdays). Analyzing
Figure 2.7, it is clear that the office building and the furniture store exhibit different behavior
in different modes. For all facilities, occupied load, L,, is estimated as follows:

A

Lo(t;, T(t;)) = ci + Z BT, ;(t:). (2.2)

To predict load when the building is in unoccupied mode, we use a single temperature
parameter, [, since we expect most facilities in the data set to be operating at or near the
dead-band at night.* Unoccupied load, L, is estimated as follows:

~

Ly(ti, T(t:) = ai + BT (t:). (2.3)

The parameters «; for ¢« = 1...480, §; for j = 1...6 and 3, are estimated using non-DR
day load and temperature data with ordinary least squares. Each of the 487 parameters is
physically meaningful: power use varies in each 15-minute interval in a week and varies as
a function of outdoor air temperature. We use 15-minute interval data from May through
September, so approximately 20 data points are available to estimate each «;; hundreds or
thousands to estimate each 3;; and thousands to estimate 3,. Applying the model to data
from a much shorter interval, such as four or six weeks, would likely run into problems from
“over-fitting,” with parameter values being overly influenced by stochastic variability in the
data.

We implemented the load prediction algorithm in MATLAB. Details on the implemen-
tation are given in Appendix A.2.

To test how well the load prediction method works we plot predictions on top of actual
load data in Figure 2.10. We also include scatter plots in Figure 2.11. As can be seen in
both figures, the prediction method works well for the office building and furniture store,
but does not work as well for the bakery. The accuracy of the prediction is a function of
how well the explanatory variables (time-of-week and outdoor air temperature) capture the
power consumption of the facility. In the case of the bakery, we would expect that power
consumption would be a function of the timing of industrial production processes, which is
not captured in the model.

For the same facilities, we plot actual and predicted temperature-dependent load in both
occupied and unoccupied model in Figure 2.12. The bakery’s electric load is less correlated
with temperature than the office building’s or furniture store’s electric loads.

4In climates where facilities transition between heating, dead-band, and cooling at night, it is advisable
to use more temperature parameters to more accurately capture the load of the facility in unoccupied mode.
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Figure 2.10: Actual versus predicted load time series for Monday-Friday, June 2-6, 2008.
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Figure 2.11: Actual versus predicted load scatter plots. Data shown are from May-Sept
2008. Significant outliers visible in the plot for the office building result from the model’s
inability to accurately predict the morning start-up. (©2011 IEEE
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This load prediction method differs from existing methods in two ways. First, we use a
time-of-week indicator variable, ;. Most methods we have seen compute separate regres-
sions for each time-of-day (e.g., [1] and Model 5 in [28]), but do not capture day-to-day
load variation. Adding a weekday/weekend indicator variable [105] or day-of-week indicator
variable [110] helps with this problem but effectively only shifts the daily load shape up or
down as a function of the day-of-week; it does not allow for other day-to-day changes in
the load shape, such as shorter operating hours on certain days of the week, or days of the
week with consistently higher peaks. A time-of-week indicator variable solves this problem,
improving model accuracy.

Second, this method is different because we avoid the use of change-point models. In
much of the energy efficiency literature, change-point models are used to determine the
outdoor air temperatures at which the building transitions from heating to the dead-band
and from the dead-band to cooling (e.g., [74]). Our piecewise-linear modeling approach avoids
the complexities of change-point models (such as the need for iterative regression) with no
significant drawbacks. We divide the range of outdoor air temperatures experienced by the
facility into six temperature intervals and allow the slope of the load versus temperature
profile to be computed separately in each temperature interval, with the constraint that
the predicted load must vary continuously as a function of temperature. We are able to do
this because we are using high resolution load data (15-minute interval) and therefore have
sufficient data to determine the linear temperature dependence in each temperature interval.

We explored several variations on the load prediction method, including adding param-
eters associated with other weather data, such as humidity, to the model. However, since
all of the facilities analyzed in this study are located in low-humidity climates, we did not
include humidity in the final model. We also experimented with different numbers of temper-
ature intervals, and allowing the temperature coefficients to vary with time interval. Most
of these changes did not substantially improve the model fit. Surprisingly to us, even adding
predictive variables such as the overnight outdoor temperature (which we expected to help
predict the load during the morning start-up) did not improve the fit very much in most
cases. In the end, we settled on the model discussed above. Others are possible and may be
better for some buildings or some situations.

2.4.3 Load prediction error

Reddy et al. [111] enumerate the many sources of error associated with using regression
analysis to model building electric load. Our regression model residuals are autocorrelated
and heteroscedastic and the regression parameters, o and 3, are correlated. Therefore, it
is very difficult to compute robust confidence intervals on the regression parameters (sim-
ply reporting the standard error associated with each regression parameter estimate, as in
[45], underestimates the level of uncertainty). However, uncertainty on load predictions (as
opposed to the regression parameters) can be approximated with the standard error, which
can be computed at each interval, 7. Computing robust confidence intervals on predictions
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made on days that were not used to build the regression models (e.g., DR days) is more
complicated and will be discussed in the next chapter.

2.5 Identifying DR Opportunities

In Table 2.4, we show how the methods presented in Sections 2.3 and 2.4 can help building
managers generate a list of informed questions that will help them identify opportunities for
DR. Specifically, we list five data analysis methods and explain each method’s relevance to
DR. We also describe what the building manager should look for when examining a plot or
evaluating a parameter. Lastly, we list some example questions that may be generated by
applying each method. While the example questions in Table 2.4 are fairly general, a building
manager could generate much more specific questions after data analysis. For example, in
examining Figure 2.4, one might ask: Why did the bakery’s near-peak load increase during
the summer, and could the additional load be curtailed during DR events or shifted outside
of the DR period?

To answer these questions, the building manager will need to use the results of the data
analysis to guide an evaluation of the facility’s operations, controls, systems, and end uses
(Figure 2.1). For example, to figure out why the bakery’s near-peak load increased during
the summer the building manager will first need to determine when the daily near-peak load
occurs. Then, he or she can determine which loads run during those hours, how much power
those loads consume, and how that has changed during the summer. With this knowledge,
the building manager can determine if the additional load is curtailable or shiftable, or if it
is essential to critical building operation.

The benefit of applying these methods is that the building manager is able to focus
his or her evaluation on issues relating to DR (though the same methods could be used to
generate questions related to energy efficiency, electricity waste elimination, or peak load
management). The answers to the questions not only help building managers develop DR
strategies but also help them pair their facilities with the right DR programs, since all DR
programs have different requirements (e.g., minimum shed required, length of time to hold
shed, predictability of shed, allowable times-of-day or days-of-week of DR events, frequency
of DR events).



Table 2.4: Partial list of methods for helping to identify DR opportunities. (©)2011 IEEE

Method

Relevance to DR

What to Look For?

Example Questions

Plot of daily load
shape

Changes in electric load from
hour-to-hour affect how much
load a facility is able to shed.

How does load vary throughout
the day?

Which equipment runs during each
hour of the day? Which could be shed,
shifted, or limited during a DR event?

Plot of near-peak
and near-base load
over time

Changes in electric load from
day-to-day affect how much load
a facility is able to shed.

How does load vary day-to-day?

Which equipment runs on the days with
the highest loads? Which could be
shed, shifted, or limited during a DR
event?

Plot of high-load
duration over time

Facilities can shed more load
during hours when they are con-
suming more.

How long is the high-load dura-
tion, and how variable is it day-
to-day and seasonally?

Which building systems/operations af-
fect high-load duration and its variabil-
ity?

Mean and standard
deviation of the
rise/fall time

Some facilities might have a hard
time participating in DR while
they are powering up/down.*

How long are the rise time and
fall time, and how variable are
they day-to-day?

Which building systems/operations af-
fect rise/fall time and its variability?

Using load predic-
tion to compare
weather-normalized
load shapes from
two or more time
periods

Variability in estimated DR
sheds is a function of unmodeled
load variability (discussed in Sec-
tion 2.6).

How variable is the electric load
over time (with weather held
constant)?

Which loads are variable? Are the vari-
able loads controllable (i.e., could they
be shifted outside of DR periods)? Is
load/shed predictability a requirement
for the DR program?

*This is particularly relevant for facilities participating in DR to support the integration of intermittent renewable energy resources,
such as wind and solar. These resources ramp in the morning and evening so facilities may be dispatched as they are powering up/down.
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2.6 Evaluating DR Effectiveness

In this section, we explain how the load prediction method described in Section 2.4.2 can be
used to quantify the effectiveness of DR strategies. In addition, we define the ‘DR Residual’
and a small set of parameters useful for characterizing the DR Residual.

To estimate the effectiveness of a facility’s DR strategies, we considered adding param-
eters to the regression model to estimate the load shed during a DR event; however, this
method would not allow us to understand shed-to-shed variability. Therefore, to analyze the
effectiveness of a facility’s DR strategies, we employ a ‘predict and subtract’ method:

1. Use the load prediction method described in Section 2.4.2 to develop a baseline model
of electric load for the facility. Use only data from non-DR days to make the baseline
model.

2. Acquire outdoor air temperature data from the DR day. Use the baseline model and
the DR day temperatures to predict what load would have been on the DR day if the
DR event had not been called.

3. For each time interval in the day, subtract the baseline prediction from the actual
electric load on the DR day. We call the resulting vector the DR Residual. For facilities
participating in ancillary services markets, the DR residual is called pseudo-generation
[71].

We applied this method to data from each of the facilities in Table 2.1. Since all DR
events were called on non-holiday weekdays in May - Sept 2008, each baseline model was
constructed only with load data from non-holiday weekdays during the same period. Though
all of these facilities participated in a traditional DR program (DR events were only called
hot summer afternoons), the same methodology could be used to evaluate “any day, any
time” DR.

In Figure 2.13, for each facility, we show the actual and baseline-predicted load for three
DR days. In each case, the difference between the actual load and the baseline-predicted
load is due to the facility’s DR strategies and other DR event-related behavior change, and
unmodeled load variability (i.e., explanatory variables in the model do not explain all of
the components of the total load, resulting in model error as shown in Figures 2.10 and
2.11). Despite automation of DR strategies (described in Section 2.2.1), for each facility,
there is variability in estimated DR sheds. Shed variability results from unmodeled load
variability, and, possibly, factors such as occupant behavior change on DR days; changes in
building operations, controls, equipment, and end-uses from event-to-event; and changes in
shed capacity as a function of outdoor air temperature, occupancy, total facility load, and
other variables. To fully understand shed-to-shed variability, we need to compute prediction
error on DR days, which is a subject of current research.

Because of load/shed variability from one DR event to the next it is instructive to look
at plots of averages. In Figure 2.14, for each facility, we plot the average baseline-predicted
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Figure 2.13: Actual and predicted load on three DR days (rows) for three facilities (columns).
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Figure 2.14: Average actual load, predicted load, and DR residual. Vertical lines show the
moderate and high price periods. (©2011 IEEE

load, actual load, and DR residual for all eleven DR events days in 2008. The average DR
residuals tell us many things including;:

e the office building and furniture shed load during both the moderate and high price
periods, while the bakery only sheds load during the high price period;

e the baseline model is unable to capture the office building’s morning start-up; and
e the furniture store’s load rebounds after the DR event.

A small set of parameters can be used to characterize DR residuals (Table 2.5 and Fig-
ure 2.15). The list is based on that developed by Mathieu et al. [91]. Average demand shed is
important because it tells us, on average, how much load is shed during the DR event. Intra-
shed variability is a way for us to capture some of the dynamics of the shed. If intra-shed
variability is small relative to the average demand shed, the shed was held steady during the
DR event, while, if it is large, the shed bounced around, increased, or decreased during the
DR event. Residual ramp time tells us how quickly the facility sheds load, and rebound tells
us how the facility behaves after the DR event. Daily peak demand and daily energy tell us
how the DR event affects the facility’s daily power and energy use.

These parameters can be computed for a certain DR event or an average DR event. In
Table 2.6, for each facility, we give values for each parameter for each DR day shown in
Figure 2.13 and for the average DR day shown in Figure 2.14. There is error associated with
each parameter value, and the values for the means are more certain than the values for
the individual events. For each facility, intra-shed variability is relatively high as compared
to average demand shed. Certain DR strategies, such as changing HVAC set points, often
lead to more intra-shed variability than strategies such as switching off lights or industrial
processes. Both the county building and the furniture store can shed load within 15 minutes
of the start of the DR period, while it takes the bakery 15-30 minutes. While all of the
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Table 2.5: DR residual parameters and definitions. (©2011 IEEE

DR Residual Parameter

Definition

Average demand shed (kW)
Intra-shed variability (kW)
Residual ramp time (min)
Rebound (kW)

Daily peak demand (%)

Baseline minus actual average load during DR event.

Standard deviation of demand shed during DR event.

Duration for load to drop to average demand shed during DR event.
Actual minus baseline average load in hour after DR event.

Actual divided by baseline-predicted daily peak demand.

Daily energy (%) Actual divided by baseline-predicted daily energy use.

Residual ramp time Hour after event
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Figure 2.15: Several DR parameters shown on the furniture store’s DR residual (from Fig-
ure 2.14). (©2011 IEEE

facilities use less total energy on most DR days, both the furniture store and the bakery may
have higher peak demand on days when they participate in a DR event. Though a facility’s
DR day peak demand generally occurs outside of the DR event period (e.g., during the hour
after the DR event, as is the case for the furniture store), these peaks affect demand charges.

2.7 Chapter Conclusion

We have presented methods for analyzing 15-minute interval electric load data from C&I
facilities. Applying these methods could help building managers ask the right questions to
discover opportunities to reduce electricity bills through DR, energy efficiency, electricity
waste elimination, and peak load management. We have focused on DR because of a lack of
existing methods and tools for identifying DR opportunities and estimating DR effectiveness,
and because the use of DR is expanding.

A number of key findings from this study are as follows:

e Plotting time series electric load data is useful for understanding electricity consump-
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Table 2.6: DR parameter values. (©2011 IEEE

Average Residual Daily .
Facility Event Date Demand i?tr.a_bs.}f.id* Ramp Rebound Peak Eaﬂy
Shed* ATADTLY ™ Pime Demand nerey
kW) (kW) (min) (kW) (%) (%)
County Bldg May 16 44 / 74 27 / 34 0-15 / 0-15 2 99 98
July 8 56 / 93 39 / 28 0-15 / 0-15 5 93 99
Aug 27 51 /103 15 /19 0-15 / 0-15 -15 92 93
Mean** 42 / 88 21 /25 0-15 / 0-15 -1 95 95
Furniture Store May 16 73/ 67 33/ 62 0-15 / *** 50 105 97
July 8 80 / 59 47 | 27 0-15 / *** 17 97 96
Aug 27 124 / 83 50 / 42 0-15 / *** -40 97 95
Mean™** 96 / 78 48 / 30 0-15 / *** 37 103 97
Bakery May 16 — /129 — /34 — / 15-30 -7 95 90
July 8 — / 82 — /40 — / 15-30 -4 104 96
Aug 27 — /79 — /37 — / 15-30 -68 105 101
Mean** — /102 — /39 — / 15-30 4 101 97

* Calculated for the moderate / high price period, except for the Bakery which did not shed load during the
moderate price period.

**Calculated over all eleven events that occurred in the summer of 2008.

***The average demand shed during the moderate price period is higher than that during the high price
period so it does not make sense to calculate this.

tion patterns and changes to those patterns, but results may be misleading if data from
different time intervals are not weather-normalized.

e Parameter plots highlight key features of electric load data and may be easier to inter-
pret than plots of time series data.

e A time-of-week indicator variable (as compared to time-of-day and day-of-week in-
dicator variables) improves the accuracy of regression models of C&I facility electric
load.

e A piecewise linear and continuous outdoor air temperature dependence can be derived
without the use of a change-point model (which would add complexity to the modeling
algorithm) or assumptions about when structural changes occur (which could introduce
inaccuracy).

e DR shed variability is a function of unmodeled load variability, and, possibly, other
factors such as occupant behavior change on DR days; changes in building operations,
controls, equipment, and end-uses from event-to-event; and changes in shed capacity
as a function of outdoor air temperature, occupancy, total facility load, and other
variables.
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e For measurement and evaluation accuracy, DR parameter values should be estimated
at the end of the summer using all available data to build the baseline model, instead of
directly after an individual event using only data before the event to build the baseline
model.

e DR parameters values computed for an individual event are far less certain than values
computed for an average event (e.g., the average of all events in a summer); therefore,
it is good practice to report values associated with means along with values associated
with individual events.

To assess and evaluate “fast DR,” such as facilities providing ancillary services [71],
which occur on time scales of seconds to minutes, high resolution (e.g., 5 minute and 4
second interval) electric load data are needed. Though we present methods for analyzing
15-minute interval electric load data, the same methods could be used to analyze higher
resolution data.

In addition, some of the methods presented here could be used by building managers for
real-time feedback control of DR resources. For example, at specific time intervals during a
DR event, a baseline model built with data from non-DR days before the DR day could be
used together with actual DR day temperature data to predict load. Subtracting the load
prediction from the actual load results in the real-time DR residual, which can be used for
feedback control [71]. A drawback to this approach is that the baseline model is built with
fewer data, all from before the DR day. An existing barrier to this approach is that, while
load and temperature data are often available in real-time, many existing building control
systems are unable to handle these data in real-time.

The methods presented here could be translated into easy-to-use tools for building man-
agers, helping them determine which DR strategies to implement and which DR programs to
enroll in, and then evaluating the effectiveness of the DR strategies they have implemented.
These tools could be integrated into real-time operating platforms to assist building man-
agers in all forms of building energy management. Future work should include developing
methods to quantify error in DR predictions, including an analysis of shed variability.
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Chapter 3

Baseline Model Error & DR
Parameter Variability

In this chapter, we use the baseline model introduced in the previous chapter to under-
stand the performance of 38 C&I facilities participating in an automated dynamic pricing
DR program in California. In this program, facilities are expected to exhibit the same re-
sponse each DR event. However, baseline model error makes it difficult to precisely quantify
changes in electricity consumption and understand if C&I facilities exhibit event-to-event
variability in their response to DR signals. Therefore, we present a method to compute
baseline model error and a metric to determine how much observed DR variability results
from baseline model error rather than real variability in response. This chapter is largely
based on [88]" and [89].

3.1 Chapter Introduction

Buildings are becoming increasingly important as active resources that support power system
operations. Though buildings have played a small role in power systems operations in the
past — either with relays that interrupt power to air conditioners and water heaters [117,
41], or by “voice dispatch” of large commercial and industrial loads [40] — recent Smart
Grid investments are demonstrating the potential for buildings to become grid-interactive
resources that are just as controllable as — or even more controllable than — electricity
generators [20].

1©2011 IEEE. With permission from my co-authors: Duncan Callaway and Sila Kiliccote. “Examining
uncertainty in demand response baseline models and variability in automated responses to dynamic pricing.”
IEEE CDC-ECC, Dec 2011.

2(©2011 Elsevier. With permission from my co-authors: Duncan Callaway and Sila Kiliccote. “Variability
in automated responses of commercial buildings and industrial facilities to dynamic electricity prices.” Energy
and Buildings, 2011.
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In DR programs, power system operators can achieve system-wide demand reductions
by providing financial incentives for buildings to change their electricity consumption pat-
terns through both shifts in energy use and load reductions, or sheds. Buildings generally
participate in DR by enrolling in dynamic electricity pricing programs or demand /capacity
bidding programs. In dynamic pricing programs, buildings face high electricity prices during
hours when the grid is stressed, encouraging them to shed load or shift energy use to less
expensive hours. In capacity/demand bidding programs, buildings bid load reductions and,
if called upon, shed load at certain times in exchange for payment. In this chapter, we focus
on C&I facilities participating in a dynamic electricity pricing program. These facilities use
the OpenADR Communication Specification [107] to receive DR event notifications from the
utility, and during events they automatically execute pre-programmed DR strategies [127].

The central challenge we address in this chapter is that DR parameters, such as Average
Demand Shed, Rebound, Daily Peak Demand, and Daily Energy (which we define in Ta-
ble 3.2), must be measured relative to an estimate of how much electricity a facility would
have consumed in the absence of the DR event. DR parameters are computed by subtracting
a counterfactual baseline from the actual power consumption of the facility. Therefore, DR
parameters will exhibit variability due to both baseline model error and real variability in
the facility’s response. We will use the following terms throughout the chapter:

1. Unmodeled load variability, or baseline model error, is load variability that is not
captured by a baseline model and not due to a DR signal. Unmodeled load vari-
ability complicates DR programs that use baselines for financial settlement (e.g., de-
mand /capacity bidding programs and programs in which loads participate in wholesale
ancillary services markets). Moreover, even DR, programs that do not use baselines for
settlement (e.g., dynamic electricity pricing programs) use baselines for Measurement
and Verification (M&V) and to calculate the cost-effectiveness of the DR programs
[59].

2. Real DR variability is event-to-event variability in a facility’s actual response, for
example, due to building managers and/or occupants overriding pre-programmed DR
strategies; broken equipment; and variability in responses as a function of occupancy,
weather, and other variables.

3. Observed DR variability occurs as a result of the combination of unmodeled load
variability and real DR variability.

Figure 3.1 illustrates the concepts of baseline model error and observed DR variability. In
this figure, we plot the actual and baseline-predicted load for an office building on two DR
days and one normal day. The left and middle plots show that responses to DR signals can
seem variable — and may, in fact, be variable. The right plot demonstrates baseline model
error.

The purpose of this chapter is to understand the variability of C&I facility responses
to DR events. The question is important for two reasons. First, in order to efficiently
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Figure 3.1: Actual and baseline-predicted demand for an office building on three different
days during the summer of 2007. The left and middle plots show data from DR event
days (the difference between the actual and the baseline prediction is a combination of the
response to the DR signal and model error), while the right plot shows data from a normal
day (the difference between the actual and the baseline prediction is model error). (©2011
IEEE

allocate generating resources, power system operators must predict how aggregations of
facilities will respond on demand response days. If all observed DR variability resulted from
unmodeled load variability, a power system operator could expect consistent DR behavior
and would only need to deal with the usual amount of demand-side variability. However, if
real DR variability is present, the DR program may create an extra burden of variability for
the system operator to manage. This could require additional power system services (e.g.,
reserves). In extreme cases, real DR variability could result in significant deviations in grid
frequency or expected power flow.

The second reason variability is important is because DR programs are evaluated on the
basis of whether or not facilities (individually or in sum) appear to have reliable responses
on DR days. M&V of utility DR programs, including those that do not use baselines for
settlement, often include analyses of the DR performance (versus a baseline) of both indi-
vidual facilities and aggregations of facilities [127]. Variability may affect the evaluation of
the DR program and determinations about whether or not a facility is suitable for DR [13].
Moreover, observed DR variability in an individual facility affects how the facility perceives
its own DR performance from event-to-event. A facility whose performance seems inconsis-
tent from one event to another may be tempted to modify its DR strategy; however, the
perceived inconsistency may have been caused by baseline model error.

Real DR variability is the most relevant measure for power system operators and DR
program evaluators. However, real DR variability can only be estimated indirectly, by thor-
oughly characterizing unmodeled load variability and relating it to observed DR variability.
Therefore, in this chapter, we first compute the error associated with DR parameter esti-
mates (e.g., demand shed estimates) for 38 C&I facilities that participated in an automated
dynamic electricity pricing program in California. We then construct a variability metric
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that captures the relative importance of real DR variability versus unmodeled load vari-
ability, and compute this metric for all of the facilties. We find that most observed DR
variability is the result of baseline model error.

A note on terminology: The DR community uses several different terms to denote the
counterfactual power usage on DR days: baselines, predictions, and forecasts. In this chapter,
we use the term ‘baseline predictions’ to refer to ex-post estimates of counterfactual power
usage computed with regression parameters (identified with historical demand/temperature
data) and actual temperature data for the purpose of M&V. We reserve the term ‘forecast’
for ex-ante estimates computed with forecasted temperature data, which we do not discuss in
this chapter. We use the term ‘DR parameter estimates’ to refer to values, such as demand
sheds, computed with actual demand data and baseline predictions. The DR community
often refers to these values as ‘DR calculations’; however, we prefer our terminology because
it makes clear that the values are uncertain. The term ‘DR parameter estimates’ should not
be confused with ‘DR estimates,” engineering estimates of expected demand sheds.

The rest of this chapter is organized as follows: In Sections 3.2 and 3.3, we describe our
data and baseline model. In Section 3.4, we explain our error analysis. Then, in Section 3.5,
we present our results and discussion with respect to baseline model error and DR variability.

3.2 Methods

Fifteen-minute interval whole building electric load data and weather data are described in
Sections 2.2.1 and 2.2.2. More details are provided in Appendix A.1.

In 2006, DR events were called separately in two geographic zones: Zone 1 included San
Francisco and the San Francisco Peninsula, while Zone 2 included the rest of PG&E’s service
territory. Nine DR events were called in Zone 1 and eleven in Zone 2. In both 2007 and
2009, twelve events were called, while in 2008 eleven events were called. Several facilities
participated in only a portion of the DR events in a year. If we knew that a facility did not
participate in a certain DR event, we did not analyze data from that DR day.

Facilities” demand profiles change year-to-year due to equipment upgrades, changes in
usage patterns, etc. To reduce the chance of creating baseline models with data from before
and after significant structural changes only one year worth of data were used to create each
model. In total, we have 87 facility-years worth of data (Table 3.1), where a facility-year is
defined as one year of data for one facility. Twelve facility-years of available data were not
analyzed because of significant structural changes visible in the data. Details are given in
Appendix A.3.

Aggregate metrics were computed by summing power for all facilities for each year (and,
in 2006, for each zone). We excluded facilities that did not participate in all of the DR events
in a year and facility-years for which we were missing more than one week of data. In sum,
nine facility-years were not included in the aggregate populations (hence the discrepancy in
number of facilities between Tables 3.1 and 3.4). All aggregate results are computed from
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Table 3.1: Number of facilities by year and facility type. (©2011 IEEE

Number Office Industrial Retail Retail Prisons

Year (Zone) of Events | Buildings Facilities Stores with PV* & Jails Museums | TOTAL
2006 (1) 9 3 0 1 0 0 0 4
2006 (2) 11 6 0 1 0 1 1 9
2007 12 7 1 3 1 1 1 14
2008 11 12 8 2 3 1 1 27
2009 12 17 8 1 3 3 1 33
TOTAL 45 17 8 7 6 4 87

*Retail stores with solar photovoltaics (PV).

baseline models built with the aggregate data, not the aggregate output of individual baseline
modes. A detailed description of aggregate system synthesis is presented in Appendix A.5.

3.3 Baseline Model & DR Parameters

Electric utilities generally use simple models to determine baseline electric load on DR days
for financial settlement and/or M&V. Many of these models involve averaging the daily
electric demand over several days (e.g., those with the highest energy usage) before the DR
day [52, 28]. Unfortunately, baseline models built by averaging can be biased. Regression-
based baseline models, which are less likely to suffer from bias, have long been used for M&V
by the energy efficiency community [45, 67, 74, 73] and are increasingly used for DR M&V [52,
28, 69, 10]. These models typically relate electric demand to weather and, sometimes, other
relevant parameters. More sophisticated baseline modeling methods (e.g., neural networks)
have been proposed, but are seldom used in practice.

We use the regression-based baseline model described in the previous chapter (Sec-
tion 2.4.2) because it performs similarly to or better than baseline models commonly used for
DR M&V. Therefore, the magnitude of the error associated with this model is comparable
to or less than that associated with common baseline models. Using better baseline models
not only allows one to compute more accurate DR parameter estimates, but also allows one
to better determine if a facility exhibits real variability in its responses to DR events.

Since all 2006-2009 DR days were called May 1 to Sept 30, baseline models were con-
structed with non-DR day demand data during the same period. We did not use data from
holidays, weekends, or days that appeared to have had power outages (i.e., days when the
minimum power use is less than a percentage of the average minimum daily power use dur-
ing the summer) to build the baseline models. Details on the MATLAB implementation are
given in Appendix A.2.

The regression parameters «, (5, and 3, are estimated with Ordinary Least Squares
(OLS). We use the OLS estimator because, though it not ‘best’ (in a Gauss Markov sense)
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due to autocorrelation and heteroscedasticity (see Section 3.4), it still produces unbiased
regression coefficients [111, 112]. However, the standard errors associated with the regression
coefficients are underestimated, so we do not use them.

The parameter estimates and temperatures on DR days are then used to predict demand
on DR days. Four DR parameters (Table 3.2), computed from the baseline predicted demand
and the actual demand, are used to characterize changes in electricity use on DR days. These
parameters are computed with 15-minute interval data and 15-minute interval predictions.
For example, average demand shed is computed by averaging the 15-minute interval demand
data during the event, averaging the 15-minute interval demand predictions during the event,
and computing the difference of the averages. These parameters are similar to those defined
in the previous chapter; however, here we define Daily Peak Demand and Daily Energy
slightly differently: as absolutes, not percentages.



Table 3.2: DR parameter definitions, meanings, and importance. (©)2011 IEEE

Parameter

Definition

If this value is positive...

Importance

Average Demand Shed (kW)

Rebound (kW)

Daily Peak Demand (kW)

Daily Energy (kWh)

Predicted minus actual
average demand during
the DR event.*

Actual minus predicted
average demand in the
hour after the DR event
(6-Tpm).

Actual minus predicted
maximum demand on the

DR day.**

Actual minus predicted
total energy use on the DR
day.

...the facility reduced
power use during the
event.

...the facility increased

power use after the event.

...the facility had a higher
demand peak than it
would have if there was
no DR event.

...the facility used more
energy than it would have
if there was no DR event.

Key indicator for how well the facility
performed.

Could affect a facility’s demand
charges; synchronized rebounds could
create a new system-wide peak.

Could affect a facility’s demand
charges; will not affect the system-wide
peak unless the individual peaks are
synchronized.

Suggests whether energy shifting or
shedding strategies predominate; impli-
cated in understanding DR’s effect on
energy use and the environment, a re-
search gap [23].

* The average demand shed is computed separately for each price period: ‘Shed 1’ refers to the moderate price period (12-3pm) and
‘Shed 2’ refers to the high price period (3-6pm).
** The actual and the baseline peak could happen at different times during the day.
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3.4 Error Analysis

Most error analyses on regression-based baseline models use the standard errors associated
with the regression coefficients [45, 73, 10]. However, these errors underestimate the true
error due to a number of issues. First, the regression parameters are correlated. Specifically,
time-of-week is correlated to temperature: the highest temperatures tend to occur in the
afternoon and the lowest temperatures occur overnight. Second, the regression residuals
are autocorrelated. In Figure 3.2, we show autocorrelation functions (ACF) and partial
autocorrelation functions (PACF) computed with regression residuals from two facility-years.
In both cases, the residuals are lag 1 autocorrelated, which is the case for all facility-years. In
some cases, we find higher order autocorrelation. Other methods of detecting autocorrelation
are described in Appendix A.4.1.

Third, the regression residuals are heteroscedastic. Specifically, we find that the variance
of the regression residuals (referred to as the ‘error variance’) is a function of time-of-week.
For a typical commercial building, error variance tends to be lower at night and higher during
the day when fluctuating occupancy affects loads. For some facilities, the error variance is
high during transition periods (e.g., when the facility is being populated in the morning).
Figure 3.3 shows plots, created using (2.2) and (2.3), of error versus time-of-week. For the
retail store, error is clearly a function of time-of-week, while for the office building, the effect
is smaller. These results not only demonstrate heteroscedasticity, but also the importance of
computing errors as a function of time-of-week. We have not computed error as a function
of temperature or predicted demand because error does not seem to be a strong function of
these variables as detailed in Appdenix A.4.2.

These issues suggest that one should use caution in interpreting the standard errors
associated with the baseline model regression coefficients. Fortunately, as we will explain
in the method description below, we do not need to calculate this in order to calculate the
error associated with DR parameter estimates.

3.4.1 Method

The goal of our error analysis is to determine the error associated with each DR param-
eter estimate for each facility-year and each aggregation of facilities. Other studies have
used regression residuals to generate baseline model error estimates [69]; however, regression
residuals are self-influenced: the model is built and tested on the same data set. Therefore,
error estimates generated with regression residuals underestimate the true error.

To avoid self-influence, we use a resampling technique called ‘Leave One Out Cross Val-
idation’ (LOOCYV). (More details on this choice are given in Appendix A.4.3). LOOCV is a
type of K-fold cross validation, which involves randomly partitioning the data into K subsam-
ples, reserving one subsample, building the model with data from the remaining subsamples,
testing on the reserved subsample, and repeating this process for all K subsamples. The
results for each subsample are combined resulting in an estimate of the prediction accuracy.
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Figure 3.2: ACF and PACF computed with the regression residuals from an office building
(left) and a retail store (right) in 2008. Each line was created with data from a week (Mon-
Fri) in which there were no DR days, holidays, or power outage days. Dashed lines show

the 95% confidence interval (£2/1/n, where n is the number of data points in the data set).
©2011 IEEE
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Figure 3.3: Error versus time-of-week for an office building (left) and a retail store (right)
in 2008. (©2011 IEEE

In LOOCYV, K is equal to the total number of observations, n. LOOCV is useful when n is
small, though the technique is computationally intensive.

We treat the demand on each non-DR day as an observation. Therefore, n is equal to the
number of non-DR days used to create the baseline prediction model (~ 90 — 95 days per
facility-year). We leave out one non-DR day, build the model with data from the rest of the
non-DR days, predict the demand on the day that has been left out, compute the quantities
associated with the DR parameters (e.g., average demand between 12 and 3 pm), compare
the predictions to the actual quantities to generate an error observation, and repeat for each
non-DR day. Since we consider error as a function of time-of-week, only residuals computed
with data from Mondays are used to determine errors on Mondays, etc. Therefore, for each
DR parameter for each day of week there are only ~ 18 — 20 error observations. It is difficult
to determine the true error distribution with so few error observations (see Appendix A.4.4).
Therefore, we assume that the error observations are normally-distributed and report error
estimates as one standard deviation of the error observations.

We do not recommend using this error analysis method on baseline models parameterized
with DR day data (e.g., morning adjustments [28]). For those models, this method will
underestimate true model error if power use outside of the DR period is affected by the DR
signal, which is common, especially for facilities that pre-cool, rebound, or otherwise shift
energy use to the morning or evening on DR days.
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3.4.2 Other sources of error

Ideally, an error analysis should quantify all possible sources of error associated with an
estimate. The methodology described above accounts for demand /temperature measurement
error; error resulting from the fact that the weather stations are not co-located with the
facilities; error resulting from temperature data interpolation; and unmodeled load variation
on days similar to those used to build the baseline model. There are two sources of error
we have not quantified: over-fitting and extrapolation. DR days are generally called on
the hottest days of the summer which means that, in some cases, baseline predictions are
made with temperatures higher than those on non-DR days, resulting in extrapolation error;
or experienced only a few times on non DR-days, resulting in over-fitting error. Over-
fitting/extrapolation error could increase error variance and/or introduce bias in predictions
made with high outdoor air temperatures.

For 26% of our DR day baseline predictions, the highest temperature on the DR day
is greater than the highest temperature used to build the baseline model. We found that
model error associated with extrapolated baseline predictions is comparable to that associ-
ated with non-extrapolated baseline predictions (see Appendix A.4.5). Also, as described
previously, error variance does not appear to be a strong function of temperature, even the
highest temperatures used to build baseline models (i.e., temperatures for which we might
expect possible over-fitting). A more detailed analysis of over-fitting error is given in Ap-
pendix A.4.6. Other baseline models, such as those that use fewer data to build the model,
may be more susceptible to over-fitting/extrapolation error. Baseline models that model
a load as a purely linear function of temperature may suffer from extrapolation error. If
over-fitting /extrapolation error is present, the method presented in Section 3.4.1 will under-
estimate DR parameter error. However, if error variance is not a function of temperature
and consequently over-fitting/extrapolation introduces only bias, over-fitting/extrapolation
error will not affect the accuracy of the DR parameter variability metrics (introduced in
Section 3.5.2).

3.5 Results & Discussion

3.5.1 DR parameter errors

The error analysis method presented in Section 3.4.1 allows us to assign error estimates to
DR parameter estimates. In Figure 3.4, we show DR parameter and error estimates for all
2009 facility-years and the 2009 aggregate population. In most cases, the error estimates
are large relative to the DR parameter estimates. For example, on average, across all years,
the error associated with Shed 1 is approximately +120% of the parameter values and the
error associated with Shed 2 is approximately +180% of the parameter values. In addition,
observed DR parameter variability is often large. However, given the magnitude of the error
estimates, we would expect some observed DR parameter variability.
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This interpretation of Figure 3.4 illustrates how including error estimates along with DR
parameter estimates allows us to draw the right conclusions from the data. Without error
estimates, it would be easy to classify a facility with observed shed variability as a variable
shedder, and, therefore, conclude that such a facility is difficult to control. However, if
the error associated with that facility’s shed estimates is large, then it is possible that the
response is actually consistent and we are simply unable to measure the exact response
because of baseline model error.
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Figure 3.4: DR parameter estimates (black) and error estimates (grey) for all 2009 facility-years. Facilities are
arranged in order of smallest to largest mean error for Average Demand Shed 1. For each facility and each DR
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There are several other things to learn from Figure 3.4. Some facilities that shed power
during DR events consume less energy on DR days, while some do not, meaning that they
shift load outside of the DR period. We also find that the Daily Peak Demand is often biased
low, because regression-based baseline models tend to under-predict maximum values (i.e.,
outliers). The aggregate population results demonstrate that DR works: the aggregated
facilities shed power during DR events and reduce the peak demand on DR days, despite the
fact that individual facilities may become peakier. Also, on average, the aggregated facilities
exhibit almost no rebound and save some energy on DR days, indicating that there is some
net curtailment—the facilities do not simply shift all load outside of the DR period.

We do not discuss the statistical significance of the DR parameter estimates because
the error estimates are not confidence intervals. Since a facility’s DR behavior from one
DR event to the next is not independent, Bayesian techniques should be used to not only
determine appropriate confidence intervals, but also pinpoint DR parameter estimates. This
would involve pooling information across DR events (i.e., using knowledge about a facility’s
behavior during one DR event to help us predict its behavior during another DR event). We
do not tackle this here because we are interested in using the error estimates to assess DR
parameter variability, not statistical significance.

3.5.2 DR parameter variability

Observed DR parameter variability has two possible sources: unmodeled load variability and
real parameter variation. For example, consider the Average Demand Shed. We generally
observe shed variability from one DR event to the next. We would like to know if observed
shed variability is a result of real shed variability (i.e., a facility curtails a different amount
from event-to-event) or if it results from unmodeled load variability (i.e., baseline model
error). If observed shed variability results exclusively from unmodeled load variability, then
we can expect consistent responses and the system operator need only deal with the usual
level of demand-side variability. If real shed variability exists, the system operator may
require additional reserves to deal with more demand-side variability than usual.

We first derive a metric, the Average Demand Shed Variability Metric (SVM), to discern
between unmodeled load variability and real DR parameter variation. Similar derivations
yield metrics for each DR parameter: the Rebound Variability Metric (RVM), Daily Peak
Demand Variability Metric (PVM), and Daily Energy Variability Metric (EVM). Then, we
present DR parameter variability metric results for the individual facility-years and the
aggregate populations, respectively.

SVM derivation

On a DR day, the Observed Load (OL) is equal to the Real Baseline Load (RBL) minus the
Real Shed (RS):
OL=RBL—-RS . (3.1)
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Neither the real baseline load nor the real shed can be measured. The real baseline load is
estimated with the Predicted Baseline Load (PBL). The difference between the real baseline
load and the predicted baseline load is the Unmodeled Load (UL):

UL = RBL — PBL . (3.2)

To compute the Observed Shed (OS), the predicted baseline load is subtracted from the
observed load:
0OS=0L—-PBL=UL—-RS . (3.3)

Our goal is to determine the variance of the real shed. Therefore, we take the variance
of (3.3), which results in:

Var(OS) = Var(UL) + Var(RS) —2Cov(UL, RS) . (3.4)

We can estimate Var(OS) by taking the variance of the 9 — 12 observed sheds and Var(UL)
by taking the variance of the ~ 95 error observations (since DR events can occur on any
weekday, error observations are used without regard to day-of-week). Therefore, we define
the shed variability metric (SVM) as:

SVM: = Var(OS)— Var(UL)
= Var(RS) —2Cov(UL,RS) . (3.5)

While the SVM does not tell us the exact value of Var(RS) due to the complicating covari-
ance term, it does tell us if real shed variability likely exists or not. Also, since Var(RS) > 0,
the SVM may tell us something about the sign of the covariance term. If the covariance
term is positive, then as unmodeled load increases, real shed increases. This could occur
when the equipment that drives the unmodeled load is also the equipment that is curtailed.
Alternatively, if the covariance term is negative, then as unmodeled load increases, real shed
decreases. This could occur when load is higher than predicted, electricity consuming services
are in high demand, and occupants/building operators override automated DR strategies; or
when load is higher than predicted, the HVAC system is operating at or beyond its maximum
capability, and consequently a reduction in HVAC setpoint has a limited effect.

Individual facility-years

To compare facilities by SVM, we normalize the measurements of the unmodeled load and
the observed shed such that Var(UL) = 1. Therefore, the minimum value of SVM is -1 (i.e.,
when Var(OS) = 0). Each DR parameter variability metric is normalized similarly.
Histograms showing DR, parameter variability metrics for the 87 facility-years are shown
in Figure 3.5. To understand what these histograms tell us about real parameter variability,
we can compare them to distributions generated for the case when real parameter variability
is zero. If real parameter variability were zero, the covariance term would also be zero,
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Table 3.3: Number and percentage of facility-years with variability metrics inside and outside
the 95% confidence bounds. ©2011 IEEE

Metric | Inside Bounds Below Out;i;livliound; OTAL
SVM1 65 (75%) 8 (9%) 14 (16%) 22 (25%)
SVM2 62 (71%) 4 (5%) 21 (24%) 25 (29%)
RVM 62 (71%) 2 (2%) 23 (26%) 25 (29%)
PVM 71 (82%) 6 (7%) 0 (11%) 6 (18%)
EVM 69 (79%) 6 (7%) (14%) 18 (21%)

* Percentages do not always add properly due to rounding.

resulting in a DR parameter variability metric of zero. However, we are unable to compute
the ‘true’ values of the DR parameter variability metrics because we can only estimate
observed parameter variance from ~ 11 observations. Assuming that the observations are
normally-distributed, we would expect the distribution of observed parameter variances to
follow a scaled x? distribution with N — 1 degrees of freedom [122]:

N —1)x
W=l oz, (3.6)

g

where z is the sample variance, N is the number of observations, and o2 is the true variance.
Therefore, the expected variability metric distributions for the case when real variability is
zero is that given in (3.6), shifted left by 1 (resulting from the subtraction of Var(UL) =1 in
(3.5)). These distributions (for N = 11) are plotted in Figure 3.5. One caveat associated with
these results is that we have assumed that we know the ‘true’ value of Var(UL), though,
in reality, it is an estimate (computed from ~ 95 observations). When we normalize the
measurements of the unmodeled load and the observed shed such that Var(UL)=1, any
error in our estimate of Var(U L) will affect our estimate of Var(O.S), which, in turn, affects
our estimate of the SVM.

If none of the facility-years exhibited real parameter variability then we would expect only
5% of facilities to fall outside of the 95% confidence bounds. However, for each parameter,
we find that substantially more than 5% of the facility-years fall outside of the bounds
(Table 3.3). This implies that some facility-years exhibit real parameter variability. Facilities
with disproportionally positive variability metrics likely exhibit real parameter variability.
Facilities with disproportionally negative variability metrics likely exhibit positive covariance
and, subsequently, real parameter variability. For the remainder of the facility-years, any
observed parameter variability may simply result from model error and sampling.

Through simulation we find that, in order to achieve the distributions shown in Figure 3.5,
it is likely that a number of facility-years have large real parameter variability, while the
majority of facility-years have little to no real parameter variability (see Appendix B.1).
Also, it is likely that for the vast majority of facility-years the covariance term is positive
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Figure 3.5: Histograms showing DR parameter variability metrics for the 87 facility-years.
Solid lines show the expected distributions if real parameter variability were zero and N =
11 (dashed lines show the 95% confidence interval). Disproportionally positive variability
metrics result from real parameter variability. Disproportionally negative variability metrics
result from negative covariance and, subsequently, real parameter variability. (©2011 IEEE
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which implies that as unmodeled load increases, real shed increases, which is consistent with
intuition. Additionally, we find that all combinations of the variability metrics are positively
correlated. Several combinations have a population correlation coefficient, p, ,, greater than
0.5: SVM1 and SVM2 (p,, = 0.76); SVM1 and PVM (p,, = 0.59); and SVM2 and PVM
(Pzy = 0.56).

The FERC has called for better understanding of responses to dynamic prices as a func-
tion of customer type [47], so we attempted to disaggregate parameter variability results by
facility attributes including facility type, HVAC system type, DR strategy, and shed size
(Appendix B.2). Results were inconclusive because of the small number of facility-years
in the data set. It was particularly difficult to disaggregate the facilities by DR strategy
because many facilities use more than one strategy. Therefore, we were unable to determine
what kinds of facilities have more or less variable DR parameters. In an effort to do this, we
are in the process of acquiring a larger data set.

Aggregate populations

DR parameter variability metrics for each aggregation of facilities are shown in Table 3.4. For
each variability metric, we have computed the two-sided p-value under the null hypothesis
that there is no real parameter variability. Therefore, real parameter variability likely exists
when p-values are small. Surprisingly, the aggregate populations exhibit a wide range of
variability metrics, similar to that seen for the individual facility-years. We would expect
more real DR parameter variability in smaller aggregate populations. For example, in 2006
Zone 2 (8 facilities), we find likely real variability in each DR parameter. However, we also
find likely real variability in both the Average Demand Shed 1 and the Daily Peak Demand in
2009 (32 facilities). Real variability in the aggregate could result from unmodeled correlation
across facilities and/or large variable facilities dominating the aggregate results.



Table 3.4: DR parameter variability metrics computed for the aggregate populations. Bold values indicate p-values
<0.05. (©2011 IEEE

e " Shed 1 Shed 2 Rebound Daily Peak Demand Daily Energy
Year (Zome)  Facilities (Peak”) SVM1 p-value | SVM2 p-value | RVM  p-value PVM p-value EVM p-value
2006 (1) 4 (2.7 MW) -0.819 (0.01) | -0.269 (0.67) | 0.077  (0.75) | -0.386 (0.47) | -0.737 (0.04)
2006 (2) 8 (8.4 MW) 3.039 (<0.01) | 3.399 (<0.01) | 1.044 (0.05) | 1.131 (0.04) | 4.578 (<0.01)
2007 13 (11.7 MW) 0.579 (0.21) | -0.117 (0.90) | -0.454  (0.32) | -0.531 (0.24) | -0.210 (0.78)
2008 21 (14.6 MW) -0.210 (0.72) | -0.142 (0.86) | 1.295 (0.02) | -0.217 (0.71) 0.163 (0.62)
2009 32 (26.9 MW) -0.696 (0.03) | -0.331 (0.46) | 0.304  (0.43) | -0.702 (0.04) | -0.227 (0.69)

“Peak demand computed for May 1 - Sept 30.
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3.6 Chapter Conclusion

We have developed a method to determine the error associated with DR parameter estimates.
We find that this error is often large and so DR parameter estimates reported without error
estimates may be misleading. For example, we may classify a steady shedder as a variable
shedder and, therefore, judge the facility to be poorly controlled when, in fact, baseline
model error simply prevents us from measuring consistent sheds. Since DR parameter esti-
mates have error, all calculations derived with these estimates, including cost effectiveness
estimates, also have error. Future research should explore the degree to which DR parameter
error affects cost/benefit analyses on DR programs and technologies.

Observed DR variability in both individual facilities and aggregations of facilities affects
the perception of persistent and reliable demand sheds. However, we find that observed
DR variability is driven, in large part, by baseline model error, not real DR variability.
For most facilities, observed DR variability can likely be explained by baseline model error
alone; however, a number of facilities likely exhibit high real DR variability. In addition,
most facilities exhibit a positive correlation between unmodeled load and real shed, which
implies that the equipment that drives baseline model error is the equipment that is curtailed
during DR events. We were unable to discern any relationship between response variability
and facility attributes, possibly due to the small number of facilities.

Variability metrics computed for the aggregate populations show that in some cases the
aggregate population likely exhibits real DR variability, which has implications for utilities
with respect to M&V of DR programs. It also has implications for the system operator. If
the aggregate response is not consistent, the system operator may have to deal with more
demand-side variability than exists on non-DR days and, therefore, will need to procure more
power systems services. In extreme cases, DR variability could result in significant devia-
tions in grid frequency or expected power flow. More research is needed to understand DR
variability in aggregate populations composed of facilities executing manual DR strategies,
as they may exhibit even more variability than populations composed of facilities executing
automated strategies.

The DR signal considered here, a critical peak pricing signal, is open-loop since the
prices do not change in response to changes in load (though the signal is often implemented
in individual facilities as closed-loop indoor air temperature control). Our results would
be different if a closed-loop DR signal were used. Specifically, we would expect less DR
variability, which could mitigate some of the issues we have described. This is an important
subject of future research.
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Chapter 4

TCL Modeling, State Estimation &
Control

In this chapter, we shift our focus from recent DR programs to emerging DR paradigms.
Specifically, we investigate methods to coordinate aggregations of residential TCLs to man-
age frequency and energy imbalances in power systems. We focus on opportunities to cen-
trally control loads with high accuracy but low requirements for sensing and communications
infrastructure. This chapter is largely based on [75],' [86],% and [90].3

4.1 Chapter Introduction

Increasingly, electric loads are participating in DLC and DR programs to improve electric grid
reliability and reduce wholesale electricity prices [41, 126]. Traditional research in this area
has focused on developing strategies that enable loads to decrease power use in the event of
loss of generation or high prices, e.g., [99, 61, 129]. Recent research has explored incorporating
local load states into control decisions to enable nondisruptive load reductions [7, 109]. This
chapter also focuses on nondisruptive control, but for the purpose of delivering services such
as load following and regulation by both decreasing and increasing power use over short time
scales. The need for these services is likely to grow with increasing production from wind and
solar generators, which are expected to increase frequency deviations and energy imbalance
[84]. TCLs, such as refrigerators, air conditioners, and electric water heaters, are excellent
candidates for providing these services because they are capable of storing thermal energy,
much like a battery stores chemical energy [20]. We note that services could also be provided

"'With permission from my co-authors: Stephan Koch and Duncan Callaway. “Modeling and control of
aggregated heterogeneous thermostatically controlled loads for ancillary services.” PSCC, Aug 2011.

2(©2012 IEEE. With permission from my co-author: Duncan Callaway. “State estimation and control of
heterogeneous thermostatically controlled loads for load following.” HICSS, Jan 2012.

3With permission from my co-authors: Stephan Koch and Duncan Callaway. “State estimation and
control of electric loads to manage real-time energy imbalance” (in review).
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by energy storage devices [43], variable speed wind turbines [4, 94], and other forms of
generation. However, in relation to these other options, TCLs may have advantages because
the amount of balancing capacity they can potentially deliver far exceeds that available from
wind generators and expected amounts of storage in the near term.

This chapter has two central objectives. The first is to extend our previous work [75, 86]
to develop a modeling and control framework that enables non-disruptive control of TCLs for
fast DR applications like load following and regulation. We present an analytical approach
to include TCL parameter heterogeneity in reduced form TCL population models. This is in
contrast to previous work that has either addressed parameter heterogeneity by simulation
[83, 96], or assumed homogeneity [19, 82, 5, 79]. The modeling framework in this chapter is
also novel in its general formulation of the application of ON/OFF control signals.

The second objective of this chapter is to gain insight into the level of sensing and com-
munications infrastructure that is required to enable fast DR. The studies referenced above
assume that power measurements are available from all loads for real-time feedback control.
Here, we relax that assumption since it is currently expensive to integrate real time power
measurement telemetry for ancillary services into existing utility SCADA systems: Pacific
Gas and Electric Company spent more than $140,000 per load in a 2009 study [15] and
Southern California Edison estimates current costs to be about $70,000 per measurement
point [115]. Though costs may decline in the future, at present these costs are too high to
measure power consumption at individual light commercial and residential facilities. There-
fore, for smaller loads, aggregated power measurements are necessary. Though decentralized
control may reduce communications requirements [58, 118, 62], here we focus on centralized
control to preserve visibility and controllability in the control room. We will examine the
effect of limited sensing and communications on the performance of aggregations of TCLs
participating in 5-minute energy markets (i.e., load following). The analysis and results are
similar for loads participating in regulation, following an automatic generation control signal.

Figure 4.1 shows the information hierarchy we consider. The local level consists of con-
trollable TCLs that may be metered to transmit information to a central controller (the
global level). The semi-global level consists of distribution substations, where one can mea-
sure the power consumed on feeders and estimate the state of controlled TCLs. We will
assume all decisions are made at the global level (whether by a system operator or load ag-
gregator responding to system operator commands), and explore several different scenarios
of information available at the global level from various levels in the hierarchy.

One of the key aims of this chapter is increased insight into how much centralized infor-
mation is needed for real-time feedback control of loads. In the most aggressive case, we find
that it is possible to estimate aggregated load states and parameters on a distribution system
with a single measurement of aggregate power consumption at the distribution substation.
Our results suggest that the amount of infrastructure needed to build a “smart grid” that
engages loads in power system services with high fidelity may be relatively small.

Section 4.2 describes our modeling framework, Section 4.3 presents four scenarios for
infrastructure and communications, Section 4.4 details our methodology, Section 4.5 presents
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Figure 4.1: Electric power system information hierarchy. (©)2012 IEEE

our simulation results, and Section 4.6 concludes.

4.2 Modeling Framework

This section describes the models used for TCL simulation. Because we are primarily in-
terested in applications that manage frequency and energy imbalance in power systems, our
modeling framework neglects reactive power flows and voltage drop on distribution feeders.
Load control strategies could affect reactive power flows and voltage drop along distribution
feeders, and this could in turn affect power consumption and duty cycles of voltage depen-
dent loads. We investigated this effect with a simple model of a distribution feeder with
impedance and voltage dependent loads and found that neglecting voltage effects introduces
an error that is unlikely to be more than 2% of real power delivered to the distribution
substation. Given the small effect and the fact that control strategies can be designed to
compensate for it, for simplicity, we will not explicitly model voltage effects here. However,
all distribution impacts must eventually be managed for the successful implementation of
any load control paradigm.
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4.2.1 Individual TCL model

We model the temperature state evolution of an individual TCL with a discrete time dif-
ference equation commonly used in the literature, e.g., [19, 30], and verified against real
populations of TCLs [30, 81, 95, 37]:

‘9@(1{5 + 1) = aﬂl(/{:) + (1 - ai)(ﬁaﬂ-(k:) — ml(k)egﬂ) + 62(147) (41)

where 6;(k) is the internal temperature of TCL ¢ at time step k, 0, is the ambient temperature,
and € is a noise process. The dimensionless TCL parameter a; is defined as follows:

where C'is a TCL’s thermal capacitance, R is its thermal resistance, and h is the simulation
time step. 0, is the temperature gain when a TCL is ON:

9g = Riptrans,i (43)

where P is a TCL’s energy transfer rate, which according to our conventions is positive
for cooling TCLs and negative for heating TCLs. P; is the power consumed by TCL ¢ when

1t 1s on:
‘Ptrans,i‘
COP;
where COP is its Coefficient of Performance (COP). We focus on TCLs with hysteretic
ON/OFF local control within a dead-band. Therefore, the local control variable m is a

dimensionless discrete variable equal to 1 when the TCL is ON and 0 when the TCL is OFF.
For cooling TCLs, it is defined as follows:

P = (4.4)

0, 92(1{? + 1) < Hsem- — (51/2
ml(k + ].) = 1, ez(k‘ + 1) > eset,i + 61/2 (45)
m;(k), otherwise

where 0, is the temperature setpoint and ¢ is the dead-band width. For heating TCLs, the
position of the 0 and 1 are switched. Though more detailed TCL models are available (e.g.,
[76, 116]), this model captures the key local dynamics, and is reducible to an aggregated
framework.

4.2.2 Plant: The TCL population

This study uses a simulated plant. Specifically, we simulated thousands of TCLs using (4.1).
Within each time step we advance TCLs through the temperature space without regard to
their temperature dead-band. At each time step, we switch ON/OFF TCLs that have moved
outside of the dead-band. Switches for individual TCLs operating autonomously occur on
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Figure 4.2: State bin transition model for a cooling TCL.

the order of once every 10 minutes. Since we set h = 2 seconds in all simulations, the
switching dynamics do not differ substantially from those of a continuous time system.

It is important to note that all control actions have been applied directly to the plant.
The reduced form TCL population model, described in the next subsection, was used for
designing state estimators and computing control signals only.

4.2.3 Reduced form TCL population model

We developed a discrete time, linear, time-invariant system model of heterogeneous TCL
populations. The advantage of this model is that it admits a range of system analysis, state
estimation, and control techniques, which allows us to achieve better tracking performance
than model-free control algorithms, as detailed in Section 4.5. Each TCL’s temperature
dead-band is mapped to a ‘normalized temperature dead-band’ that is divided into %
temperature intervals (Figure 4.2). For any given temperature a TCL may be ON or OFF,
so we divided each temperature interval into two state bins, resulting in a total of Ny;, state
bins. Each state bin contains the fraction of TCLs within that state and each TCL moves
through the normalized temperature state space at a particular rate. Consider thousands of
TCLs, each at a different point in the state space, each moving at a different rate. We can
model the movement of the TCL population by computing the probability that a randomly
chosen TCL transitions from one state bin to another over one time step. An Ny, X Ny
Markov Transition Matrix (MTM) can be derived by computing transition probabilities
from/to each bin. The transpose of the MTM is the A-matrix commonly used in control
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applications, defined by:
xz(k+1) = Ax(k), (4.6)

where @ is the Ny, X 1 state bin vector, which contains the fraction of TCLs in each bin.

We next provide the analytical foundation for the A-matrix. Though it is possible to
model heterogeneity in more than just one parameter, for simplicity, we model heterogeneity
only in C' (and therefore a) and ignore € (later we consider full parameter heterogeneity).
Therefore, (4.1) becomes:

91(1{5 -+ 1) = alﬁl(k) + (1 - ai)(ea - ml(k)eg) (47)

Consider a group of TCLs that are at the same temperature O,y and either all ON or
all OFF. The probability that a randomly chosen TCL from this group will move to 8,4 in
one time step is:

P(eend‘estart> = P(az) (48)

where one can use (4.1) to solve for a; in terms of Ogary and Genq. Assuming P(a;) is inde-
pendent of temperature, the probability that a randomly chosen TCL will move from Og;art
to anywhere in the n'" bin, 6, < 6 < 6,41, in one time step is:

P(en < 6)end < 9n+1|estart) - / p(a') da (49)

where p(-) is the probability density function, and one can use (4.1) to solve for a; and ay
in terms of Ogart, 0, and 0,,,1:

0, — 60 — mb, b, — 0" — mb,
ay = a9 = .
6)a - estart - meg ea - estart - meg
Here, 0 = 0,, and 0" = 6,,,; if the TCL is traversing from low temperatures to high tem-

peratures, or #' = 6,1 and 6" = 0, if the TCL is traversing from high temperatures to low
temperatures.

Assuming TCLs are uniformly distributed in any temperature bin and p(a) is independent
of temperature, the probability that a randomly chosen TCL will move from the m'™ to the
n'™ state bin in one time step is:

P(en < 6)end < 9n+1|9m < 6)start < em—i-l)

Om+1 a2
= An7m = / / p(a) da d@start. (410)
Om ai

This integral can not be solved analytically (Appendix C), so for each combination of starting
and ending bins, we evaluate (4.10) numerically to generate the analytically-derived A-
matrix. Again, we assume TCLs switch only at discrete time steps, and so within a time
step TCLs may move outside of the dead-band. We assume that each TCL that moves
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Table 4.1: Partially heterogenous air conditioner parameters.

Parameter Meaning Value*

Oet temperature setpoint 20°C

) temperature dead-band width 0.5°C

0, ambient temperature 32°C

R thermal resistance 2°C/kW

C thermal capacitance 1.5-2.5 kWh/°C
Pirans energy transfer rate 14 kW

COP coefficient of performance 2.5

*Values for a 250 m? house adapted from [19], except C which was derived using data from
[63] assuming that thermal capacitance scales with floor space.

outside of the dead-band at some time between k and k + 1 is switched at k£ + 1. However,
at k + 1 these TCLs are still outside of the dead-band. To keep track of them, we expand
the temperature range of bins 1 and % + 1 in Figure 4.2 to —oo and oo, respectively.

If we allow R and P, to vary across TCLs, the A-matrix becomes harder to derive.
However, for arbitrary heterogeneity, we can identify the A-matrix using real or simulated full
state information (temperature and ON/OFF state) from a sample of the TCL population.
This is possible with Hidden Markov Model parameter estimation.

We analytically derived the A-matrix for a system of TCLs with the partially heteroge-
neous TCL parameters, listed in Table 4.1. We considered the case where the TCL param-

eter, a, is uniformly distributed between ap,;, and ana.x (computed from the parameters in
the table):

Gmax —@min

(4.11)

—L1 1f Amin < a < Amax
0 otherwise

We also identified the A-matrix using state information from a plant composed of 1,000 TCLs
(with the same partially heterogenous TCL parameters) to count TCL transitions from one
bin to the next over 1,800 time steps. We compare the eigenvalues of the analytically-derived
and identified matrices in Figure 4.3. For Ny, > 2, the eigenvalues form an ellipse on the
complex plane. When N, = 2, both eigenvalues are real. For each number of state bins,
the eigenvalues of the analytically derived and identified matrices are nearly identical. We
use identified matrices in subsequent simulations.

4.2.4 Centralized control of the TCL population

The previous subsection described the dynamics of TCL populations as governed by local
hysteresis control only. In this section, we present a centralized control framework. Consider
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circle.
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the state space model:

x(k+1) = Azx(k) + Bu(k) (4.12)
y(k) = Cz(k) (4.13)

where the vector @ contains the fraction of TCLs in each bin and u and y are the input and
output vectors respectively.

We define u to be an % x 1 vector that only influences a TCL’s ON/OFF state (i.e.,
a TCL’s temperature state is not directly controllable). The absolute value of each element
of w is the fraction of the total population of TCLs to switch. Positive elements of w switch
TCLs ON, while negative elements switch TCLs OFF. We can constrain w so as to switch
only TCLs in certain bins to, for example, minimize compressor short cycling, as described
in Section 4.4.4.

Since each TCL that switches out of an ON bin switches into the corresponding OFF bin
(and vice versa), B is structured as follows:

~1 0
0 ~1
B= |- —| (4.14)
- 1 0 =

This control design ensures that each TCL will stay within its dead-band, though TCLs may
switch more frequently than they would in the absence of control.

If the only real time measurement is TCL aggregate power, Piotal meas, ¥ 1S @ scalar and
C is a row vector as follows:

C = Pox N 0,---,0,1,---,1 4.15
ON 4{VTCL (Y, y YUy 4y 9 ( )
Cp Npin Nbin
2 2

where Ny, is the number of TCLs in the population and Poy is the mean power consumption
of TCLs in the ON state. Note that Pox may not equal the mean power of all TCLs in the
population since TCLs with lower rated power may spend proportionally more time in the
ON state. Poy can be computed if all TCL parameters, ambient temperatures, and dead-
bands are known, or if ON/OFF state information is available and the aggregate steady
state power consumption of the population, P;ualss, is known.

For the reference case, described in Section 4.3, we assume full state information from all
TCLs is available in real time. In that case, C becomes an (N, + 1) X Ny, matrix:

Cref - [ INbingin :| . (416)



CHAPTER 4. TCL MODELING, STATE ESTIMATION & CONTROL 63

Therefore, the first Ny, rows of the (Nyi, + 1) X 1 y-vector are the measured states and the
last row is the aggregate power measurement. Though not considered here, one could use
C' if full state information is available in real time from a subset of TCLs.

The pair [A, B] is not controllable: the controllability matrix is of rank n — 1 because
the controller cannot drive all states to zero (the fraction of TCLs in each bin must sum
to one). However, for both C' and C,, aggregate power can be tracked and the system is
observable.

4.2.5 Model performance

We first compared the autonomous behavior of the reduced form model to that of the plant.
Starting all TCLs in the same bin (i.e., all TCLs are synchronized), the aggregate power con-
sumed by the TCL population exhibits an oscillatory decay towards the steady state power
consumption of the TCL population. The oscillatory decay is related to TCL parameter
heterogeneity: homogeneous populations exhibit undamped oscillations, and oscillations de-
cay faster with increasing parameter heterogeneity as TCLs spread out over the temperature
state space. In the reduced form model, there is a negative correlation between the number
of bins and the damping of the oscillation. This finding is consistent with [5], where a high
number of bins (200) was chosen in order to yield a non-decaying oscillation corresponding
to a homogeneous system. Interestingly, a reduced form model built with a large number
of bins produces non-decaying behavior, even when the model has been identified from a
heterogeneous parameter set. Thus, for heterogeneous populations, the number of bins can
be seen as a tuning variable used to achieve good matching to the decay behavior. However,
for tightly controlled systems, getting the number of bins right may not be very important.

To evaluate model performance under more realistic conditions, we compared the forced
behavior of the reduced form model to that of the plant. Using the TCL parameters listed
in Table 4.2, we simulated a 10,000 TCL plant. We randomly drew each parameter from
uncorrelated uniform distributions between the minimum and maximum values shown in
the table, and used simulated state information to identify the A-matrix and Poy. Two
randomly generated open-loop control sequences (drawn from uniform distributions) were
used to force the population: high forcing, in which up to 12.5% of the TCLs were switched
in one time step, and low forcing, in which up to 2.5% of the TCLs were switched in one
time step. The control was applied such that TCLs in bins nearer to the dead-band were
switched preferentially. We then evaluated the ability of the model to predict the aggregate
power consumption of the plant. We assume that the model knows the state perfectly when
the prediction horizon is zero and gains no additional state information over time.

In Figure 4.4, we plot root mean square (RMS) prediction error (normalized by the steady
state power consumption of the TCL population) versus prediction horizon, and compare
the results to those generated with a persistence model. Several cases, using models with
different numbers of state bins, are shown. The mismatch between the output of the plant
and that of the reduced form model is due, at least in part, to the assumption that the
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Table 4.2: Fully heterogenous air conditioner parameters.

Parameter Meaning Value*

Oet temperature setpoint 15-25°C

) temperature dead-band width 0.25-1°C

0, ambient temperature 32°C

R thermal resistance 1.5-2.5°C/kW
C thermal capacitance 1.5-2.5 kWh/°C
Pirans energy transfer rate 10-18 kW

COP coefficient of performance 2.5

*Values for a 250 m? house adapted from [19], except C which was derived using data from
[63] assuming that thermal capacitance scales with floor space.

parameter distribution of TCLs is independent of temperature. In actuality, the parameter
distribution of TCLs is a function of initial condition, simulation time, and temperature.
We find that, for low forcing, models with two state bins perform the worst, though beyond
that the number of state bins does not seem to significantly affect the accuracy of aggregate
power predictions. However, for high forcing, models with more state bins produce more
accurate predictions. The plot also shows that control actions that require long prediction
horizons may not perform well. We have restricted ourselves to using the model to predict
aggregate power in the next two seconds, though, in the future, we plan to explore control
schemes that require longer prediction horizons.

4.3 Scenarios for Infrastructure and Communications

Different levels of infrastructure and communications lead to different system set-ups and
control performance. In this section, we first discuss several options for system identification,
estimation, and aggregate power measurement. We then describe the four scenarios that we
investigate in this chapter.

4.3.1 Options

System identification options

We can identify the system with real or simulated full state information from all or a subset of
the TCLs. To do this, we need either 1) state measurements, Tyeas, and Piotalss O 2) knowl-
edge of the TCL parameters, ambient temperatures, and dead-bands (i.e., DR participants
could provide their TCL parameters when they enroll in a program). If this information
is unavailable, we can identify the A-matrix using a joint parameter and state estimation
technique, such as an Extended Kalman Filter (EKF).
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State estimation options

If we have already identified the system, a state estimator, such as a Kalman Filter, can be
used to estimate the states based on knowledge of u, Piotal meas, and, possibly, @yeas. If we
have not identified the system, we can use a joint parameter and state estimation technique.

Aggregate power estimation options

We can estimate aggregate power by metering all or a subset of the TCLs to report ON/OFF
state to the central controller in real time. We can also estimate it at the distribution
substation by subtracting a counterfactual substation power forecast (i.e., a forecast created
with models/data that do not include the effects of the DR program) from the actual power
recorded at the substation. The remaining signal is a combination of the control response
and the forecast noise. Adding Pota1ss to this signal results in a noisy measurement of the
aggregate power consumption of the TCL population. This method of computing the control
response is similar to that used to assess DR sheds in traditional DR programs, except that
in these programs one usually subtracts a counterfactual ex-post building power prediction
from the actual power recorded [28].

4.3.2 Four scenarios

The four scenarios are composed of combinations of the above options, as described in
Table 4.3. Block diagrams describing the cases are shown in Figure 4.5. In all scenarios,
a controller takes in a desired trajectory, Piotaldes, along with the current aggregate power
estimate, Piotalest, and state estimate, &g, to produce the input vector, u. We translate u
into e, an Ny, X 1 vector of switch probabilities so that we can broadcast the same control
vector to all TCLs.

Using broadcast control vectors, as opposed to addressing each TCL individually, ensures
that the computational burden is low. In each time step, TCLs are switched only ON or
OFF. Therefore, the switch probability associated with one state bin in each temperature
interval is 0% and the switch probability associated with the other is computed by dividing
the relevant entry of w by the relevant entry of @, which nonlinearizes the control:

+
[min (wu" ,1)} for j =1,..., Noin

est,j 2

Urel,j = —u ) +
[min (M, 1)] for j = (Mo 1), .., Ny

Test,j

(4.17)

where [|T sets negative values to zero. At each time step, each TCL receives u,; determines
its current state and, subsequently, which element of u,, to act upon; generates a random
number to determine if it should switch or not; and, possibly, switches ON/OFF.

In Scenarios 1-3, system identification is performed offline using either the TCL param-
eters or Tpeas and Piotalss, and a Kalman Filter is used for state estimation (Figure 4.5a).
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In Scenario 1, the full state is measured perfectly in real time (so C' is defined as in (4.16)),
while in Scenarios 2-3 it is not measured in real time (so C'is defined as in (4.15)). Despite
perfect state measurements, we have found it beneficial to use a Kalman Filter in Scenario
1 because the TCL population model is imperfect. Using the imperfect model together
with the imperfect state estimates, rather than the perfect state measurements, to predict
aggregate power in the next time step results in better control performance.

The only difference between Scenarios 2 and 3 is the way in which TCL aggregate power
is measured in real time. In Scenario 4, the only information available offline is c,, so system
identification and state estimation are performed in real time with an EKF (Figure 4.5b).

Each scenario requires different infrastructure. The minimum infrastructure required
is shown in Table 4.3. In Scenarios 2 and 3, additional infrastructure is required if system
identification is performed with state measurements, instead of TCL parameters. Specifically,
TCLs must be equipped with temperature sensors and measurement/knowledge of their
ON/OFF state, though they do not need to transmit this information in real time.



Table 4.3: Scenarios.

System Identification

Information Available in
Real Time

State Estimation

Minimum Infrastructure Required

TCL-level low-latency two-way
Offline, using TCL pa- Temperature and power data connection, TCL temperature
. . Full state measured;
Scenario 1 rameters or ®peas and consumption from all Kalman Filter sensor, TCL power measure-
Piotal,ss TCLs, measured perfectly ment/knowledge, local decision
making*
TCL-level low-latency two-way data
Scenario 2 Same as Scenario 1 ON/OFF state information Full state not mea- connection, TCL ON/OFF state
from 100% or 30% of TCLs sured; Kalman Filter measurement/knowledge, local deci-
sion making*
Distribution area power
. TCL-level low-latency one-way data
consumption and forecasts, . .
. connection, substation-level low-
. . assuming forecast error . .
Scenario 3 Same as Scenario 1 .. Same as Scenario 2 latency one-way data connection,
standard = deviations  of substation power measurement, lo
5% or 10% of the the cal decisionpmakin * ’
substation load &
In real time, using
Scenario 4 an EKF to identify Same as Scenario 3 EKF Same as Scenario 3

the A-matrix; assumes
knowledge of ¢,

*Local decision making capabilities are required to translate the control input vector into actions.

TOYLINOD ¥ NOILLVINILSA ALVLS ONITAAON TOL ¥ HALdVHO

89



CHAPTER 4. TCL MODELING, STATE ESTIMATION & CONTROL 69

4.4 Methodology

4.4.1 Simulation parameters and system identification

We parameterized the TCL population using the TCL parameters in Table 4.2. We randomly
drew each parameter from uncorrelated uniform distributions between the minimum and
maximum values shown in the table, and ¢ from a normal distribution with mean 0 and
standard deviation 5 x 1074

We assumed a distribution substation load of 17 MVA (in California, the typical size
range for substations is 15-45 MVA) and a coincident TCL load of 15% of the distribution
substation load, which was chosen as a balance between having so few loads that the state
estimation methods would not work and having so many loads that it would be difficult for
an aggregator to recruit them all within one distribution area. To satisfy these assumptions,
we used 1,000 TCLs per distribution substation. For 10,000 TCL populations, we aggregated
the results of ten individual substations. The TCLs within each substations are not identical,
though we draw the TCL parameters from the same distributions.

For Scenarios 1-3, we identified the A-matrix by simulating a population of TCLs and
using full state information from all of the TCLs to count the number of TCL transitions
from each starting bin to each ending bin over 1800 time steps, and normalizing the resulting
matrix such that each column summed to one. For Scenario 4, we identified the A-matrix
using an EKF, which will be described in Section 4.4.3. In all scenarios, we compute Poy by
dividing the aggregate power use of the population by the number of TCLs in the ON state
at each time step, and then finding the mean.

4.4.2 State estimation

For Scenarios 1-3, we designed a standard Kalman Filter [119] using the MATLAB function
kalman on the identified system:

x(k+1) = Ax(k) + Bu(k) + B w(k) (4.18)
y(k) = Cx(k) + v(k) (4.19)

where B, = In,. «n,., @ is an Ny, X 1 process noise vector, and v is a measurement noise
vector the same size as y: (Npi, + 1) X 1 in Scenario 1 and a scalar in Scenarios 2 and 3.
The Ny X Npin process noise covariance matrix, Qgp, was computed with the residu-
als between the state values associated with the plant and those predicted by the model.
Therefore, ‘process noise’ includes both noise associated with individual TCLs and plant-
model mismatch. The noise was modeled as white since the Kalman Filter assumes white
noise. In reality, plant-model mismatch results in colored process noise, making the Kalman
Filter sub-optimal. Since we would never expect to know Qxp perfectly, for each case, we
constructed two system parameterizations (different draws of TCL parameters, noise, etc.
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from the same distributions), and use one to compute Qyp and the other, along with Qxp,
to assess tracking performance.

For Scenario 1 and Scenario 2 (100% metering), the aggregate power measurement noise
variance, Rk, was set to zero. However, in some cases, the function kalman was unable to
build a convergent Kalman Filter with Rxp = 0, so the value was increased to up to 10 kW2,
For Scenario 2 (30% metering), Rxr was computed with the residuals between the system
output associated with the plant and the measured system output. The measurement noise
was also modeled as white, though in reality it too is colored, making the Kalman Filter
sub-optimal. Again, we use one system parameterization to compute Rkr and another to
assess tracking performance. For Scenario 3, Rxr was computed from the assumed distri-
bution substation power forecast error standard deviation: 5% and 10% of the distribution
substation load. Rgg is held constant in each simulation run. In reality, the distribution
power forecast error variance could change over time. Therefore, we model the hypothetical
changes in variance by having it follow a sinusoid with a period equal to the length of the
simulation run, between 0.5 and 1.5 of Rykp.

In practice, we may not have adequate information to compute Qxr and Rk as described.
In that case, we could compute Qkpr and Rkp through simulation, iterative tuning, or by
measuring full state information and aggregate power consumption perfectly from a small
population of TCLs (e.g., in a pilot program) and then extrapolating the results to the larger
population.

The accuracy of the Kalman Filter estimates for the various scenarios is shown in Fig-
ure 4.6. Each scenario is carried out with a population of 1,000 TCLs using Controller 1,
which will be described in Section 4.4.4. The figure shows that estimates of states closer
to the edge of the dead-band are more prone to error. This is because the accuracy of the
Kalman Filter is a function of the accuracy of the reduced form TCL population model. In
turn, the reduced form model is a function of the data used to build it. The model is best
at predicting states for systems forced similarly to the system used to identify the model.
Here, the model was identified with data from an unforced plant and then applied to forced
plants. In this case, the model predictions of states closer to the edge of the dead-band
(especially bins 1 and % + 1) are more prone to error. Randomly forcing the system and
using the state trajectory to identify the model does not improve the ability of the model
to predict the states of a system controlled to participate in load following because the two
state trajectories are completely different. One could implement an adaptive scheme, for
example, use a preliminary model to control the system to participate in load following, use
the state trajectory to identify a better model, and iterate. Such an approach merits further
investigation, but it may be difficult to implement in practice.

4.4.3 Joint parameter and state estimation method

Scenario 4 requires joint parameter and state estimation. Treating the entries of the A-
matrix as unknown states that do not vary over time, we can derive nonlinear state/output
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Figure 4.6: Accuracy of the Kalman Filter estimates.

equations and use an EKF for state (and therefore parameter) estimation. We attempted to
estimate both the A-matrix and ¢, online; however, the estimator was unable to converge
to the true value of c,. Therefore, this approach requires measuring, deriving, or estimating
Cp.-

Consider the Ny, = 2 system:

2(k+1) = [ﬁ;i ﬁ;j ] (k) + [ B } u(k) (4.20)
yk)=c, [ 0 1 ]x(k) (4.21)

where A; 1, A1 2, As1, and As o are unknown parameters. Since the number of TCL:s is fixed,
we know that A1 + Ay =1, A1o+ Aso =1, and 1 + z2 = 1. Treating Aoy and Ay as
states, we can derive the following nonlinear state/output equations:

2ok 4+ 1) = Ag1(1 — 22(k)) + Az x2(k) + u(k) (4.22)
Agq(k+1) = Asq(k) (4.23)
Ago(k+1) = Ass(k) (4.24)

y(k) = cp a2 (k). (4.25)

Provided the system is locally observable, we can use an EKF to estimate the three
parameters/states and compute the remaining parameter/states from the results. To check
for local observability, we employ the method detailed in [3], which requires forming the
discrete time, nonlinear, local observability matrix, ©. © must be full rank for the system
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to be locally observable. For our system, © is a 3 x 3 matrix defined as follows:

Vy(k)
0= Vyk+1) (4.26)
Vy(k +2)

where Vy is the gradient of the output equation with respect to each of the states/parameters
at time step k. For forced systems, to compute y(k + n), where n > 0, in terms of xo(k),
Ay 1 (k), and Ay (k), we assume a series of inputs uy, ..., u,,. We find that the Ny, = 2 system
is locally observable everywhere, except when:

det(@) = A271 + Uy — T9 — Ag’l To + A272 To = 0. (427)

We used an EKF to identify parameters and states in the Ny, = 2 system. We were
unable to get the system to converge for more complicated systems (see Appendix D). More
research is needed to determine if other nonlinear state estimation methods might be appro-
priate. Also, it may be possible to derive high order systems using parameters identified for
the Npi, = 2 system along with knowledge and/or assumptions about the TCL parameters.

To implement the EKF, we have adapted the algorithm implemented in [21], which
computes the Jacobian of A and C through complex step differentiation and then implements
the discrete time Kalman Filter equations on the linearized system. We chose Qxp iteratively
and think of it as tuning parameter. Rkp is computed as in Scenario 3.

4.4.4 Controller design

We designed two simple controllers. Each entails first computing the total fraction of TCLs
to switch either ON or OFF in the next time step, ugoa1, defined as follows:

Ptotal,dcs<k + 1) — @otal,prcd(k + 1)
NrcLPon

ugoal(k‘) =K (428)
where K is the control gain and Piapred 1s the predicted aggregate power. If the state
estimates are near perfect, then the aggregate power estimate is near perfect and K should
be one. However, if there is significant error in the state estimates, K = 1 can result in
high frequency oscillations. Therefore, for Scenario 1 and Scenario 2 (100% metering), we
set K =1, and for the other cases we selected K through iterative tuning to minimize RMS
€error.

The two controllers differ in how uge is divided amongst the bins. We assume that
control actions can not force TCLs that are outside of the dead-band to switch. Since bins 1
and % + 1 may contain TCLs that are outside of the dead-band, we do not apply control
to these bins in systems with Ny, > 2. In systems with Ny, = 2, control actions are applied
to TCLs regardless of their temperature state, generally resulting in too few TCLs switched.
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Controller 1 divides 14001 equally amongst all of the allowable OFF or ON bins depending
upon the sign of ug.1. Since the division of uge, does not take into account the number of
TCLs in each bin, a bin may be called on to switch more TCLs than are actually in that
bin, resulting in a 100% switch probability and too few TCLs switched.

Controller 2 preferentially switches TCLs in bins closer to the edge of the dead-band,
with the goal of switching TCLs that are about to ‘naturally’ switch, therefore minimizing
the total number of times a single TCL is switched over time. Additionally, after switching
off, an air conditioner, heat pump, or refrigerator must remain off for a certain length of time
to allow liquid refrigerant to exit the compressor, and Controller 2 decreases the chance of
compressor short cycling. The controller uses the current state estimates to assign fractions
of TCLs to switch sequentially to the bin closest to the dead-band, the following bin, and so
on, until all of ug., has been assigned. Error in state estimates results in either too few or
too many TCLs switched.

4.4.5 Benchmark controller

We have benchmarked our results against the results of a simple proportional controller.
The switch probability at each time step was computed as follows:

Ptotal,des(k) - ?total,meas(k‘)
NrcLPon

um](l{?) = Kp (429)

where Kp is the proportional gain, which was selected through iterative tuning to minimize
RMS error. If u,q > 0, TCLs are switched ON and if u,q < 0, TCLs are switched OFF.
We assume that, at each time step, each TCL receives u,q; determines if it is ON or OFF
and, subsequently, whether it may need to act; generates a random number to determine if
it should switch or not; and, possibly, switches. Note that the benchmark controller may
cause TCL compressors to short cycle, and so the tracking results reported Table 4.5 are
optimistic.

4.4.6 Market signal and performance metrics

P ota1.des Was designed to mimic CAISO 5-minute market signals, described in [14]. Uncorre-
lated random desired power values uniformly distributed between % and 2 times the steady
state power consumption of the TCL population were chosen every 5 minutes. The TCLs
are expected to ramp linearly from one desired value to the next, reaching the desired power
value exactly halfway into the 5-minute period. To participate in the 5-minute market,
generators provide bids including total capacity and ramp rates. A TCL population’s total
capacity could be 0 to E?EICL P;; however, here we have used a smaller range because it
reduces the probability that the population will deviate from steady state long enough to
saturate (i.e., all TCLs at either the high or low end of the dead-band). TCL populations
have essentially no ramping constraints.
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We computed power tracking performance over 1800 time steps, always starting the sys-
tem at approximately steady state. To evaluate tracking performance, we used two metrics:
(1) the RMS power tracking error as a percentage of the steady state power consumption of
the population and (2) the Compliance Threshold (CT). The CT is relevant to the CAISO,
which defines non-compliance as deviation from desired power values by a specific threshold
for more than n,. consecutive intervals [14]. After a period of non-compliance, a resource can
become compliant by coming within the threshold for n. of consecutive intervals [14]. We
define the CT as the minimum power value at which the TCL population is compliant, and
set nye = 3 and n. = 1, which are the values the CAISO initially uses for a new resource.

4.5 Simulation Results

We present the results of the model-estimator-controller system in Table 4.4 and the bench-
mark controller in Table 4.5. Note that the values of K and Kp should not be directly
compared. Figure 4.7 shows the tracking performance of 1,000 TCL populations in each sce-
nario. We have subtracted Piota1ss from both the desired trajectory and the aggregate power
consumption of the TCL population, so the results shown are zero mean deviations from
steady state. Figure 4.8 shows state/parameter convergence, for Scenario 4 (5% forecast
noise).



Table 4.4: Model-estimator-controller performance results.

Npin = 2% Npin =10 Npin =40 Npin = 80
Case Nrcr K Ctrlr 1/2 Ctrlr 1 Ctrlr 2 Ctrlr 1 Ctrlr 2 Ctrlr 1 Ctrlr 2
RMS CT RMS CcT RMS CT RMS CcT RMS CT RMS CcT RMS CT
) W) | R W) | B W) | B W) | B W) | B &W) | ) &W)
Scenario 1:
Reference Case 1,000 1.0 0.91 15 0.61 9 0.59 13 0.59 20 0.57 7 0.59 10 0.54 22
10,000 1.0 0.59 180 0.25 49 0.29 35 0.26 74 0.30 31 0.26 29 0.31 69
Scenario 2:
100% Metering 1,000 1.0 0.95 20 0.75 8 1.0 5 0.69 8 0.76 21 0.66 18 0.75 7
10,000 1.0 0.59 162 0.31 32 0.36 80 0.30 10 0.41 90 0.29 67 0.45 129
30% Metering 1,000 0.70-0.99 5.0 102 5.0 62 4.8 93 4.8 42 4.5 38 4.4 71 4.8 137
10,000 0.49-0.90 2.7 1,037 2.2 541 2.4 549 1.8 369 2.2 409 1.8 167 2.1 224
Scenario 3:
5% Error** 1,000 0.31-0.90 7.6 156 5.9 15 6.9 117 5.2 72 6.3 180 4.9 74 6.8 97
10,000 | 0.31-0.90 7.0 1,768 5.0 531 6.2 725 4.1 528 5.4 1,310 3.9 448 6.1 1,059
10% Error** 1,000 0.30-0.85 9.2 174 6.8 251 8.7 281 6.1 147 7.4 213 5.4 46 8.5 180
10,000 | 0.30-0.85 9.3 1,675 6.6 1,707 8.7 2,256 4.9 543 6.6 1,651 4.4 819 7.5 2,309
Scenario 4:
. 1,000 0.05 71 59
5% Error 10,000 0.05 6.6 763
- 1,000 0.02 88 167
10% Error 10,000 0.02 81 1,445

* For Npijn = 2, both controllers produce the same control input, so we only report one set of results.

** Distribution substation power forecast error standard deviation.
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Table 4.5: Proportional controller performance results.

RMS CT
(%) (kW)
1,000 65 11 29

10,000 7.5 0.68 109
1,000 63 43 56

10,000 65 1.5 220
1,000 03 91 189

10,000 0.3 8.6 2352
1,000 0.08 105 174

10,000 0.08 10.2 1,879

Case NTCL Kp

100% Metering

30% Metering

5% Error*

10% Error*

* Distribution substation power forecast error standard deviation.

The results show that the model-estimator-controller system performs better than the
proportional controller in all cases except Scenario 2 (30% metering). In Scenario 2 (30%
metering), the measurement noise is highly autocorrelated so the Kalman Filter does not
work well. Some slight performance improvements are possible by tuning Rkg; however, even
then, the proportional controller performs better. A different state estimation technique that
does not assume Gaussian white noise would likely perform better.

Generally, as less information is available for system identification, state estimation, and
control, the tracking performance degrades. An exception is Scenario 4 in which the TCLs
perform better than the TCLs in Scenario 3, 2 bins. This indicates that there is some
value in the A-matrix not being fixed. In all other cases (10, 40, and 80 bins), Scenario 3
performs better than Scenario 4, indicating the value in additional bins. In fact, comparing
the performance of Controller 1 across systems with different numbers of bins, we find that
systems with more bins almost always produce better tracking results. Systems with more
bins more accurately predict aggregate power in the next time step, provided the TCL
population model and state estimates are accurate.

Error in Scenario 1, the reference case, results from both our imperfect model and our
imperfect method of applying the control. Our model is imperfect because we assume that
the probability of a; is independent of temperature and that TCLs in each bin are uniformly
distributed over the temperature range of the bin. Also, as described previously, the model
is best at predicting states for systems forced similarly to the system used to identify the
model. The control is applied imperfectly because it is converted into switch probabilities.

In each case, increasing the number of TCLs in the population reduces tracking error
(except one anomaly: Scenario 3, 10% forecast error). However, aggregating distribution
substations does not help as much as we would expect if errors were independent across
substations. If that was the case, we would expect the standard deviation of the tracking
error to increase as v/ Piota1 Since the variance of independent random variables adds; however,
we find that the standard deviation of the tracking error increases almost l