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Abstract: Hourly end-use load information is extremely useful to
utilities for purposes of system planning and forecasting, demand-side
management, and peak-load planning. Load data transfer—borrowing
data from other service territories andfor time periods-—is less
expensive than direct metering, However, not much is known about the
imprecision and statistical bias introduced by methods of load data
transfer. We evaluate the accuracy of 11 low-cost load data transfer
methods for residential air conditioner use. We use each method to
predict load shapes which are then compared to a shared set of actual
end-use measured loads. We conclude that the degree of imprecision
and bias introduced by each method can be quantified, at least in a
preliminary way, and that low-cost methods like the ones we evaluated
may be cost-effective for the many purposes for which utilities use
end-use load data.

Keywords: load modeling, residential air conditioning load data,
end-use planning, end-use forecasting

I. INTRODUCTION

Cutting costs and retaining customers are two important
business challenges for electric utilities in the late 1990s. The
cost-effective acquisition and deployment of customer end-use
information will figure prominently in meeting these challenges
as utilities use these data to better understand customer energy
demand.

Acquiring end-use metered load data presents a dilemma for
utilities. On the one hand, there is little question of the value
of knowing the timing and magnitude of end-use loads in
customers’ premises, for purposes of system planning, demand-
side management, and planning for peak loads. Furthermore,
the electricity industry is unique in its ability to gather
information, through its metering system, on the consumption

Joseph Eto
Lawrence Berkeley National Laboratory
Berkeley, CA 94720 USA

of its product on a fine time-scale and with a high level of
resolution. On the other hand, collecting and analyzing end-
use metered data is expensive. Costs have been reported from
$15-25k/building in the commercial sector to $3-7k/house in
the residential sector for long-term end-use metering projects.
[3].! There have been only a handful of large, continuous end-
use metering projects in the country; most projects involve very
small samples or short metering periods [14].

From a business perspective, the critical question about
acquiring end-use load data is: will revenues from use of end-
use data exceed the cost of acquiring the data?” If the end-use
data have a large impact on a costly decision such as
reinforcing a substation, then it is worth spending more to get
these data, and vice versa. Or if the cost of gathering end-use
data can be reduced, utilities can more easily justify taking
advantage of the weatth of information they represent.

This paper evaluates 11 low-cost methods of acquiring
residential central air conditioner load data. Residential central
air conditioning is often the dominant contributor to residential
peak demands, and often dictates the timing and magnitude of
system peak demands, as well. As a result, residential central
air conditioner loads are of particular concern for system
planning, demand-side planning and evaluation, and cost-of-
service analysis.

The 11 methods evaluated here all involve modifying or
adapting metered central air conditioning data originally
collected in one service territory and transferring for its use in
another service territory. We refer to these methods generically
as load data transfer methods. Transferring load data is always
less expensive than load metering. We focus specifically on
the very lowest cost load data transfer methods, i.e., ones that
do not require detailed demographic or engineering data; the
most complicated methods rely on hourly weather data.

“Borrowed” end-use load data has long been used in the
clectricity industry; however, its use has always been
accompanied by nagging concerns regarding the inevitable
losses in precision and introduction of statistical bias

! These estimates represent fully burdened costs for large, detailed, two-year
end-use protocel projects including sum-check quality control procedures. The
costs are equally split between installation and maintenance; installation costs
are equally split between hardware and labor. Imponantly, these costs do not
include the considerable effort required to develop software to archive and
analyze the data.

2 See [6, 8] for illustrations of decision-analytic approaches to ration end-use

and load research data resources, which evaluate these trade-offs
systematically.



associated with using data not from the borrower’s service
territory.> The goal of our work is to represent the performance
of load data transfer methods so that potential users can assess
the precision of these data and thus the cost effectiveness of
using them. An important motivation for our decision to
examine comparatively low-cost data transfer methods is our
conviction that, in the right circumstances, low-cost methods
may be the most cost-effective source of end-use load
information. To demonstrale this point, we create a controlled
set of conditions that permit us to evaluate directly the precision
of data transfer.

The paper is organized in four sections following this
introduction. In Section II, we describe a testing procedure that
we developed to evaluate the performance of the load data
transfer methods; this procedure involves comparing loads
predicted by each method to a reference set of loads that were
developed from end-use metered data. We define several
measures to capture different aspects of the performance of the
methods. In Section III, we describe the 11 residential central
ait conditioner load data transfer methods that we evaluated.
In Section IV, we present our findings and describe the relative
accuracy of the types of methods. Section V summarizes our
findings.

II. EVALUATING THE PERFORMANCE OF LOAD
DATA TRANSFER METHODS

The desire to avoid costly metering has always been a
strong motivation for borrowing or transferring load data from
elsewhere. Evaluating the performance of load data transfer
methods is difficult because the actual loads that the wansferred
data will be used to represent are, by definition, unknown. In
other words, there is no standard by which one can assess the
precision and bias of different load data transfer methods.
(This limitation can also extend to direct metering unless
methods are devised for using metered data in real time.) In
this section, we describe a simple procedure for evaluating the
performance of end-use load data transfer methods and
introduce measures to evaluate different aspects of the
performance of the methods.

Our evaluation of the performance of the load data transfer
methods consists of using each method to “predict” hourly
loads for regions for which we have separately developed
known, reference load shapes from metered data. These
reference load shapes were developed from metered data
collected during a five-year period from 350 central air
conditioners located in three California regions: Fresno,
Sacramento, and San Jose [2]. We created a single hourly load
shape for cach region (and cach year) by aggregating and
averaging the metered data within each region [5].

Some of the models were estimated using data from the
same regions upon which they were then tested. We estimated

These concerns should surface whenever new data are incorporated into
business decisions. An objective of our work is to demonstrate that these
concerns can be addressed systematically, regardless of whether the data are
borrowed or developed in-heuse.

these models using only the first two years of load shape data
from the five-year project. For all models, our “test” consisted
of comparing predictions for the final three years of load shape
data. Thus, we avoided “testing” the modéls on their ability to
predict data that they already incorporated.

There are many ways to measure the performance of load
data transfer methods. Because our goal is to determine the
usefulness of transferred load data, we developed three
measures of performance that capture information of key
importance to utilities' system planning/forecasting,
demand-side planning and evaluation, and cost-of-service
analysis. These threc measures are: (1) daily energy use, (2)
daily peak load, (3) load at 4 PM, Sce Figure 1. The
importance of each measure, of course, will depend on the
specific application of the load data; measures that are
important for one application may be less important for other
applications.

The first measure, daily energy use, indicates how well a
load data transfer method predicts energy use for each day of
the forecast peried (three summer seasons). In other words, for
our study this indicator measures how well the methods predict
total air conditioning energy use during three summer seasons.
The accuracy of such transferred end-use energy consumption
data is important in determining the usefulness of the data for
purposes of system planning/end-use forecasting, demand-side
program planaing, and demand-side program evaluation.

Our second measure, daily peak load, is a partial but
important indicator of how well the methods predict daily load
shape. This measure is important for demand-side program
planning and program evaluation. It is less important for
system planning because the peak load for an end-use may not
be coincident with system-wide peak demand.

The third measure, load at 4 PM, is a proxy for measuring
the contribution of an end use to system-wide coincident peak
demand—many utilities record system peak demands during
the later portion of hot summer afternoons. Coincident peak
demand is of extreme importance for system planning/
forecasting, local area reliability evaluation and planning, and
cost-of-service studics.

III, RESIDENTIAL CENTRAL AIR CONDITIONER
LOAD DATA TRANSFER METHODS

In this section, we define three categories of load data
transfer methods and classify the 11 methods we studied. We
refer to the source of the original load data as the donor, and
the region to which the data are being transferred as the
recipient.

A. Categories for End-Use Load Data Transfer Methods

The first and least expensive class of load data {ransfer
methods uses a donor’s load data without any adjustment.
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Figure 1. Measures of Hourly Fit

These methods can be as simple as digitizing end-use load
shapes from reports summarizing the results of end-use
metering studies. We refer to these as “pure” or non-model-
based transfer methods. Several of our examples were of this
type.

The second and third classes of methods both involve the
development of models (rather than actual load shapes) from
the donor’s load data; the models are then used, along with
non-load information from the recipient, to predict loads for
recipient. Use of a model to decompose and/or systematically
relate load shapes to non-energy use data (such as hourly
weather} allows introduction of recipient-specific information,
which, ideally means more accurate load shapes,

In the second class of methods, models are developed using
only weather information from the donor’s and recipient’s
service territories. We refer to these methods as weather-
based-transfer methods. The bulk of our evaluation focuses on
examples of this type of method.

The third class of methods comprises models based on
weather, demographic, and engineering information from both
The third class of methods comprises models based an weather,

demographic, and engineering information from both the
donor’s and recipient's service lerritories. Sophisticated
statistical analysis may be involved [15, 16]. The methods can
be used to develop separate models for individual households
[11], which would then be followed by detailed matching of
similar households between donor and recipient service
territories. The collection and analysis of engineering and
demographic information greatly increases the cost of this
method compared to the previous two. We did not examine
examples of this type.*

B. Eleven Low-Cost Residential Central Air Conditioner Load
Data Transfer Methods

The 11 residential central air conditioner load data transfer
methods we examined are listed in Table 1.

4 Although this is strictly true, two of the models implicitly control for the
demographic and engineering characteristics of the donor and recipient wtility
service territories in a way that is actually superior to what is offered by models
in this third class of methods.



TABLE 1
ELEVEN RESIDENTIAL CENTRAL AIR CONDITIONING LOAD DATA TRANSFER METHODS

Load Data Transfer Method | Type and Description Source of Donor Load Data
RELOAD Non-model Southemn California [13)
CEEDI, CEED2 Non-model Southern Califomnia, unknown

CEEDw

Weather-model: adjustments based on dry-bulb tempetature

Southern California

Quantum
temperature [12]

Weather-model: 24 hourly regressions, based on dry-bulb and wet-butb

Pacific Northwest [1]

LBLI1SJ, LBLIS, LBLIF

Weather-medel: 24 hourly regressions, based on four weather variables [4]

Northern California (San Jose,
Sacramento, Fresno) (4]

LBL2SJ, LB1L2S, LBL2F

Weather-model, 2-stage: daily energy based on up to six weather variables;
fixed hourly load shapes selected based on dry-bulb temperature [4]

Northem California (San Jose,
Sacramento, Fresno) (4]

RELOAD—RELOAD ijs a software system for the
management and manipulation of load shape data [10].
RELOAD includes algorithms to estimate end-use Ioad shapes,
a variety of tools for editing and redefining load shapes, and a
collection of default load shape data for a variety of end uses in
the residential, commercial, and industrial sectors. The default
load shapes are based on metered loads from a number of
end-use metering projects conducted across the United States
and are provided as a single, representative hourly load shape
for each end use. We examined the default load shape for
residential central air conditioning. In other words, a single,
un-adjusted 24-hour "typical” load shape taken from the
RELOAD library of end-use load shapes was compared to
metered daily load shapes for each of day of three summers.

The default RELOAD residential central air conditioning
load shape was developed from five-minute-interval, metered
data collected in 1987 from 62 single-family, detached
tesidences in the Southern California Edison (SCE) service
territory [13]. ‘The SCE service territory encompasses most of
Southern California.

A"pure” load shape data transfer method such as RELOAD
must address many potentially significant sources of bias,
including differences in: the physical features of household,
weather conditions, air conditioning equipment, and operational
behavior, In our study, it is possible that these biases might not
be a significant concern because the donor and recipient service
territories are adjacent (although the data were collected in
different years). Nevertheless, it is impossible to generalize
from our findings to other cases.

CEED—The Center for Electric End-Use Data (CEED) is
a clearinghouse for end-use load and energy information {7].
CEED's data request service (DRS) collects end-use metered
data from metering projects around the country and provides
these data and related information on a fee-for-service basis.
DRS can customize data in a number of ways including
selecting, reaggregating, and rescaling,

CEED's DRS provided us with three sets of hourly end-use
load shape data. The first two sets of dala, called CEED1 and
CEED?2, are similar to the RELOAD data set in that they are
also examples of a "pure” load data transfer method. Both are

a single unadjusted, average daily load shape consisting of 24
separate load values developed from two different load
metering projects in the CEED library, CEED1 was, in fact,
developed from data collected by the same metering project that
provided the data used to develop RELOAD. The difference
between CEED1 and RELOAD is that the CEED data were
developed from a larger sample of residences than the data used
to develop RELOAD.

A third set of data, called CEEDw, was developed
specifically for our project. We provided the DRS with hourly
weather data from the three regions in our study and asked for
scparate representative hourly load shapes for each region for
each day of the three summers for which we had metered loads
to compare CEEDw against. DRS created CEEDw by adjusting
CEED1 using these hourly dry-bulb temperatures to rescale
loads from their library of metered loads. Specifically, the DRS
performed 24 separate regressions — one for each hour of the
day - on a composite derived from their library of donated loads
and hourly dry-bulb temperatures associated with these loads.
The DRS then introduced the hourly dry-bulb temperatures
from the three summer forecast periods (i.e., the recipient's
weather) and produced a predicted value for each hour of these
three  summers. CEEDw, therefore, represents a
weather-model-based data transfer method, according to our
classification of models. CEEDw atlempts to address
differences in weather and location between the donor and
recipient but does not explicitly address other potentially
important differences in the characteristics of the two donor and
recipient populations, such as household size.

Quantum—~Quantum Consulting developed a serics of
end-use load shape data transfer models for use in a recent
technology assessment project [12]. As with CEEDw, the
central air conditioner model consists of 24 individual
regressions, one for each hour of the day, Unlike CEEDw, the
explanatory variables included both hourly dry- and wet-bulb
temperature. The hourly metered data used in these models
were collected by the Bonneville Power Administration as part
of the ELCAP project [1].

Like CEEDw, the Quantum method attempts to address
differences in weather but does not explicitly address other



potentially important differences in the characieristics of the
donor and recipient populations, such as housing thermal
properties or occupant behavior.

LBL Onc- and Two-Stage—The last two models we
analyzed are based on methods supported by an hourly electric
load model called HELM [9]. HELM operates as a
post-processor  for separate, stand-alone annual energy
forecasting tools; that is, HELM takes, as input, forecasts of
annual energy use and then allocates (he energy to the houts of
the year. For space conditioning end uses, HELM offers a
choice of two models. Three versions of the two models were
estimated using the reference load shapes for three geographic
regions: San Jose (ST), Sacramento (S), and Fresno (F).

The first model, catled one-stage (LBL1), is similar to
Quantum in that it consists of 24 separate linear regression
models (one for each hour of the day). However, the models
were estimated using four variables (rather than two as in
Quantum). After some experimentation with various possible
explanatory variables, the models were estimated using: 1) a
degree-hour version of the temperature- humidity index, base
68; 2) a summation of the prior six hours of this index; 3) the
square of this index; and 4) a dummy variable for day-type
{weekend versus weekday). _

The second model, called two-stage (LBL2), is also based
on separate models for two types of summer days [4].
However, the model for each type of day consists of two
sub-models. First, total daily energy use is estimated with a
linear regression model based on six weather variabies (which
is the maximum permitted by the HELM model). The variables
for each model were selected from among a list of over 30
possible explanatory variables, all of which were based on
dry-bulb temperature and relative humidity (e.g., average daily
values, minimum value, maximum value, degree-days to various
bases, etc.) The variables were selected to maximize the
explanatory power of the daily energy model; accordingly, the
variables selected and their coefficients vary by region, season,
and day-type. Second, daily energy use is allocated to the hours
of the day using a fixed load shape. The fixed load shape is
selected from a set of six load shapes that are developed
separately for each type of day. The criteria for selecting
among the fixed load shapes is based on a single daily weather
variable (e.g., average dry-bulb temperature). Hence, if the
daily weather observation falls within a particular range, the
hourly weights associated with a particular fixed load shape
corresponding to this range are used to allocate total energy to
each hour of the day.

We will look closely at the accuracy of these last two
models when they are used to predict loads for the regions upon
which they are based, because these results will be indicative of
the upper limit in performance one could expect from a load
data transfer model. That is, in these instances, the recipient
and donor are identical. Specifically, the models are estimated
using the first two years of reference load shapes developed for
each of the three regions. They are then used to forecast or
predict load shapes for the final three years of reference load
shapes for the same region.  Because LBL1 and [.LBL2 were

estimated using data from the same areas for which load shapes
were then forecasted, the models' predictions will represent the
best possible performance of the second class of models. That
is, the two models, when used in this way, implicitly control for
all differences (e.g., in housing thermal properlies and, to a
lesser extent, occupant behavior) with the exception weather.
They are, in this regard, representative of the type of
performance one might expect from the third class of models
we defined, in which differences in building characteristics and
occupant behavior are explicitly accounted in addition to
weather. We will refer to these two models, in which the
recipients and donors are the same, as "idealized" methods.

IV. FINDINGS

Our findings were generally consistent for our three study
regions, so we describe detailed findings for only one region,
Fresno, shown in Figure 2. This is the hottest of the three
regions examined. For each of the three measures of
performance (daily energy, peak demand, and load at 4 PM), we
present the distribution of errors (i.e., the difference between
predicted and actual loads) for each model.

The distributions follow a standard format. Starting from
the middle, the median is represented by a hollow line and the
ends of the shaded box represent the upper ends of the first and
third quartiles of the distribution. The shaded box represents
the range in which half the errors lie. The t-bars at the top and
bottom of the plots represent a distance of 1.5 times the
interquartile range and thus include most of the errors.
Individual errors greater or less than 1.5 times the interquartile
range are reported individually as extreme values outside the t-
bars.

A median value far from the horizontal zero line is
indicative of significant deviation (bias) in the model's
predicted value compared to the metered value. Wide t-bars are
indicative of substantial spread in the errors, i.e. substantial
imprecision. Other things being equal, less bias is preferable to
more, so the median value should be close to zero, and more
precision is preferable to less, so the t-bars and upper and lower
edges of the shaded box should be tightty clustered around the
median.

We review the findings by answering three questions: (1)
How do the findings vary depending upon which of the three
measutes of performance is considered? (2) Which methods are
more biased/more precise? (3) How well do the so-called
“idealized” methods, which were estimated using data from a
given region, perform in predicting loads for this same region
(LBLIF and 1L.BL.2F),

We find that the results are substantially though not
completely consistent for the three measures of performance.
That is, if a method is biased in one direction or is
comparatively more or less precise for any one measure, it is
also likely to exhibit the same characteristics for the other two
measures. This tendency is most pronounced with regard to
each model’s precision but is stifl generally true for its bias,
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Figure 2. Region 3—Summer 1987 to 1989

We conclude that the weather-model-based methods
generally perform better than the pure or non-model-based
methods. In particular, the weather-model-based methods
appear to be far more precise than the non-model-based
methods. An exception is the LBL two-stage models, which
are as, or more imprecise than the non-model-based methods.
The methods all show some degree of bias.

Amoeng the non-model-based methods, the performance of
RELOAD is striking because its precision is high compared to
CEED1 and CEED2. Among the weather-model-based
methods, the three LBL one-stage models (LBL1SJ, LBLIS,
and LBLIF) perform fairly consistently (small bias, higher
precision), compared (o CEEDw (greater bias, similar
precision) and Quantumn (greater bias, lower precision). As
mentioned, the three LBL two-stage models (LBL2ST, LBL2S,
and LBL2F) are noticeably less precise than the other weather-
based models,

Finally, it is instructive 10 examine the performance of
LBLIF and LBL2F, which were estimated using the same
reference load shapes (although from different years) to which
they are being compared. The results obtained using these

meodels represent what is likely to be the best performance that
might be expected from even more sophisticated models or
even from direct metering. As might be expected, LBLIF is
the most precise of all the methods considered; however, there
is still noticeable bias in the results. Other methods showed
lower bias but lower precision. LBL2F's bias is comparable to
that of LBLIF (small, but still noticeable), yet LBL2F is far
less precise.

V. CONCLUSIONS

We have developed and applied a straightforward test to
evaluate the performance of 11 methods for developing
residential air conditioning load shapes using borrowed data.

The methods ranged from extremely low-cost ones
involving no adjustment of borrowed data to slightly more
expensive ones that involved developing simple statistical
correlations between borrowed data and hourly weather data.
All the methods are significantly lower in cost than direct
metering. We were able to estimate two "idealized” models
using data from the same region for which the test was



conducted; we argue that the results from these models most
likely represent the best performance that could be expected
even from more sophisticated data transfer methods and or
direct metering, We found that weather-based models generatly
performed better than non-weather-based models. One of the
idealized models performed skightly but not dramatically better
than the other weather-based models; the other idealized model
performed slightly worse.

We recommend that choices of methods to develop end-
use load information should consider the cost of obtaining the
information relative to the value of the decisions that the
information supports. No method is free from error or bias.
The importance of error and bias should not be evaluated in the
abstract, however, but instead relative to available alternatives.
By demonstrating that relatively low-cost methods for
borrowing or transferring load shape data have comparable
performance to what can be expected from more expensive
methods, we conclude that relying on low-cost metheds may be
a highly cost-effective alternative relative to using more
expensive methods, such as direct load metering.
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