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Abstract

The ef®ciencies of methods employed in solution of building simulation models are considered and compared by means of benchmark

testing. Direct comparisons between the Simulation Problem Analysis and Research Kernel (SPARK) and the HVACSIM� programs are

presented, as are results for SPARK versus conventional and sparse matrix methods. An indirect comparison between SPARK and the IDA

program is carried out by solving one of the benchmark test suite problems using the sparse methods employed in that program. The test

suite consisted of two problems chosen to span the range of expected performance advantage. SPARK execution times versus problem size

are compared to those obtained with conventional and sparse matrix implementations of these problems. Then, to see if the results of these

limiting cases extend to actual problems in building simulation, a detailed control system for a heating, ventilating and air conditioning

(HVAC) system is simulated with and without the use of SPARK cut set reduction. Execution times for the reduced and non-reduced

SPARK models are compared with those for an HVACSIM� model of the same system. Results show that the graph-theoretic techniques

employed in SPARK offer signi®cant speed advantages over the other methods for signi®cantly reducible problems and that by using sparse

methods in combination with graph-theoretic methods even problem portions with little reduction potential can be solved ef®ciently.
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1. Background

Detailed simulation of building energy systems involves

the solution of large sets of non-linear algebraic and differ-

ential equations. These equations emerge from component-

based simulators such as TRNSYS [1] or HVACSIM� [2],

or equation-based tools such as SPARK [3] or IDA [4]. Since

each of these tools employs a different solution strategy, the

question arises as to which strategy is most appropriate for

the kinds of equations encountered in the building simula-

tion domain.

TRNSYS and HVACSIM� are both based on subroutines

containing algorithmic models of the underlying physics for

the represented building system component. TRNSYS, the

program with the longest and perhaps most wide spread

usage, employs a `̀ block iterative'' strategy, calling the

component subroutines in a sequence largely determined

by the order in which they appear in the user's problem

de®nition. Convergence is sought using successive substitu-

tion of calculated interface variables into the block inputs on

the next iteration. If convergence is indeed obtained, solu-

tion is often fast since the number of iteration variables is

small and there are no vector-matrix operations. However,

the successive substitution method is unreliable in general,

so convergence is often slow or not obtained at all. The

HVACSIM� program, which is much like TRNSYS at the

problem de®nition level, assembles a vector of the interface

variables throughout the model and employs a Newton-like

solution strategy. The advantages sought with this approach

are robustness and ef®ciency, since the information in the

Jacobian allows calculation of a better next guess than the

previous value alone. Indeed, provided that initial values of

the interface variables are within the radius of convergence,

the solution is approached quadratically. However,

HVACSIM� often is less ef®cient than TRNSYS in practice

because of the need to calculate the Jacobian and solve the

linear equation set that it represents at each iteration.

Because no reduction is attempted, the size of this set is

the total number of block interface variables, ni and solving

it is O�n3
i �. Consequently, the more rapid and robust con-

vergence can be overwhelmed, resulting in the longer

runtimes often experienced relative to an equivalent

TRANSYS model.

The IDA and SPARK modeling environments represent a

new departure in that they formulate the model and its

solution, in terms of equations rather than the algorithmic

subroutines employed in TRNSYS and HVACSIM�. One
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advantage of this approach is that the models of individual

components are input/output free. That is, the same com-

ponent model can be used for a variety of different input and

output designations. This allows conceptual separation of

the model from the problem, the model is general, and a

speci®c problem is de®ned only when a speci®c set of inputs

is designated. Although, the two modeling environments are

similar in this important respect, the solution methods

employed are radically different. In IDA, the equations

are formed as residual formulas, e.g. R � f �x; y; z� and R

is forced to zero at the solution point. Residual equations

comprising math models of individual physical component

are grouped into component models, with variables relevant

at the system level exposed to the interface. An IDA system

model consists of a set of such component models together

with set of coupling equations that, in effect, equate equiva-

lent interface variables at different component models. The

coupling equations are all linear, of the identi®cation form

p1 ÿ p2 � 0 or the conservation form m1 � m2 ÿ m3 � 0,

but are large in number so that IDA equation sets tend to be

quite large and sparse. For example, a simple example used

in IDA reports [5] has 26 coupling equations augmenting 12

model equations. An innovative solution strategy employing

sparse matrix methods in a Newton-like iterative process is

used to solve the resulting large, sparse system. Because the

size added by the coupling equation set is an obvious

detriment to overall solution ef®ciency, the solver has a

`̀ compact solution'' option for which the coupling variables

and equations are, in some sense, removed. However, the

expected theoretical performance improvement is not rea-

lized in the implementation, as it appears to in fact decrease

solution speed [5]. Nonetheless, there is some anecdotal

data (from informal discussions with users) to suggest that

IDA may be somewhat faster than HVACSIM� on some

problems. Unfortunately, no benchmark testing results have

been reported for IDA, so the actual performance remains

uncertain.

Like IDA, SPARK [3] is equation-based. However,

SPARK relies upon the mathematical graph for model

representation and solution rather than the matrix. To sup-

port the graph, rather than expressing equations as residuals,

they are expressed in the form x � f �y; z�, where the func-

tions are symbolic inverses of the user-supplied model

equations. This allows graph algorithms to be used to

determine a sequence of function evaluations that leads to

the solution. This alone is an advantage, since it eliminates

the need for coupling equations entirely. Further, it allows

the problem to be decomposed into separately solvable (i.e.

strongly connected) components. Within each strong com-

ponent, if no direct sequence is possible, as evidenced by a

cyclic problem graph, a small `̀ cut set'' is determined so as

to minimize the number of variables involved in the sub-

sequent Newton-like iteration. As a result of these reduc-

tions, the size of the Jacobian matrix, and hence, the linear

set that must be solved at each Newton iteration, is reduced,

often signi®cantly. Consequently, as will be shown in this

paper, solution speed is greatly reduced.

While ideas from graph theory have been used in con-

nection with equation system solving before [6±12], SPARK

applies graph methods directly to the non-linear equations.

The graph, rather than the matrix, is the primary data

structure for storing the problem structure and data and as

already noted, graph algorithms are employed to determine a

solution sequence that operates directly on the non-linear

equations. Another distinctive attribute of the SPARK

approach is that the model equations are stored individually,

rather than packaged into modules and are treated as equa-

tions rather than as formulae with assignment (algorithms).

Symbolic methods are employed to ®nd explicit inverses of

the equations, when possible, to ensure computational ef®-

ciency. In these ways SPARK is unique. However, increas-

ingly, simulation software is employing some of the ideas

embodied in SPARK. For example, Klein, in collaboration

with F. Alvarado, produced the Engineering Equation Solver

[13], which employs decomposition using sparse matrix

methods. This is conceptually the same as the strong com-

ponent decomposition done in SPARK. However, reduction

within blocks is not done in this software. In addition,

TRNSYS has recently been modi®ed to allow `̀ reverse

solving'' [1]. This is a move toward input/output free

(non-algorithmic) modeling, another tenet of SPARK. Also

in the building context, Tang has applied graph-theoretic

methods to improve matrix-based solution schemes [14,15].

Although, the SPARK methodology is well established,

there has been relatively little systematic comparison of

solution speed between SPARK and alternative methods

available for solving large sets of equations, such as arise

in building simulation. In order to begin to ®ll this gap, a

simple benchmarking experiment was designed. Two

problems sets were de®ned: (a) a replicated set of four

Nomenclature

ci scalar constant

d correction in Newton±Raphson iteration

f vector of functions being solved in Newton±

Raphson iteration

J Jacobian matrix in Newton±Raphson iteration

LU lower/upper matrix factorization

n number of equations and variables

O(f(n)) order of notation (the operation in question is

bounded from above by g(n), where n is size

of data operated on)

PI proportional±integral control algorithm

qsi;j heat source rate per unit surface node in

discrete form of Laplace's equation

Ti,j temperature of (i, j) node in discrete form of

Laplace's equation

U conductance

x solution vector of size n in Newton±Raphson

iteration

xi scalar variable
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non-linear equations, and (b) the Laplacian equation, i.e.

heat conduction, in a two dimensional grid of various sizes.

These two problems, while somewhat removed from main-

stream building system simulation, were selected to repre-

sent the endpoints in the degree to which problems are suited

to the methods used in SPARK. To complement ®ndings

from these simple problems, the study was extended to

include actual building HVAC systems models of consider-

able complexity. The system selected is one previously

studied by Haves [16] using a different building simulation

tool, thus, providing opportunities for direct comparison.

This work was reported at the Building Simulation '99

Conference [17] in Kyoto.

Discussion at the Kyoto conference raised the question of

how effective the SPARK graph-theoretic methods are when

compared to state-of-the-art sparse matrix solution methods

applied directly to the unreduced problem, as is done in IDA.

Speci®cally, are the techniques routinely applied in sparse

matrix packages fully equivalent to SPARK methods,

thereby, making it unnecessary to carryout graph-theoretic

reduction directly on the non-linear problem? To address

this question, one of the problems reported in the Kyoto

paper was solved using the sparse matrix package used in

IDA, SuperLU [18]. Because SuperLU appears to be one of

the most advanced sparse matrix packages, it would seem

that if the answer to the question is positive, then it should

solve faster than the SPARK implementation. This is shown

not to be the case. That is, the new results con®rm that the

SPARK methods, at least for problems with signi®cant

reduction potential, are signi®cantly faster than sparse

methods alone. In addition to these new results, more

discussion is provided on the comparison to HVACSIM�.

Otherwise, the results here are the same as in the Kyoto

paper and are presented here for the convenience of the

reader.

2. Non-linear equation example

The ®rst benchmark problem derives from a problem in

the SPARK User's Manual consisting of four highly non-

linear equations:

x1 � x3 � x2
2 �

�����
x2

p � c1; x2 � x1 ex1 ;

x1x4 � x3x4 � x3
4 � c2; x4 � x3 eÿx3 (1)

SPARK finds a solution to these equations by the calculation

sequence:

x3 � 0:1; x4 � x3 eÿx3 ; x1 � c2 ÿ x3x4 ÿ x3
4

x4

;

x2 � x1 ex1 ; x3 � c2 ÿ x1 ÿ x2
2 ÿ

�����
x2

p
; iterate on x3

(2)

Using the default SPARK solution process, Newton±Raph-

son iteration is performed until the difference between two

successive values of x3 is less than a specified tolerance.

Thus, it is seen that reduction of 4:1 is achieved relative to

conventional practice of iteration on all unknown variables.

With c1 � 3000 and c2 � 1, the solution found is x4 �
0:288576, x1 � 2:9273, x2 � 54:6738 and x3 � 0:454716.

For the numerical experiments, this set of equations was

implemented as a SPARK macro class called example which

was then instantiated n/4 times to get a problem of size n.

Obviously, every instance of example is in fact a separately

solvable problem. SPARK is able to discern this structural

regularity and partition the problem graph into n/4 strongly

connected components, each with a cut set of size one.

Consequently, during the numeric phase of the solution, n/4

single-variable iterative solutions are carried out. Most

conventional, general solvers would instead solve a single

equation set of size n by iteration on all n variables. If

Newton±Raphson iteration were used, a linear set with an n

by n coef®cient matrix would need to be solved at each

iteration.

For comparison purposes, this equation set was also

solved with three other methods. First, a hand-crafted New-

ton±Raphson non-linear solver (nlsolve) was written speci-

®cally for this equation set, with the problem size as an input

parameter. In this solver, the four Eq. (1) were coded in a

single function that was called as needed for calculation of

the residual functions and the Jacobian. The matrix func-

tions from SPARK were used to calculate the Jacobian

numerically and solve the linear set for new estimates of

the iteration variables. Second, a sparse Newton±Raphson

solver (spnlsolv) was written using the sparse LU solve

function from the Meschach sparse matrix package [19]. The

interface, function evaluation, Newton±Raphson loop and

output were basically the same as for nlsolve, with the only

difference being the use of sparse storage date types and

sparse matrix solver functions from Meschach. The same

solution tolerance (1� 10ÿ6) was used in both cases.

Comparative run-times with a 333 MHz AMD K-6/2

processor are shown in Fig. 1. As would be expected, the

experimental results show O�n3� performance for the full

matrix solution. The solver based on the Meschach sparse

matrix functions shows much better performance, approxi-

mately O�n2�. Also as expected, SPARK is much better than

the sparse implementation, showing about O�n�.

Fig. 1. Solution times for non-linear benchmark, SPARK vs. Meschach.
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In order to con®rm that these dramatic solution speed

improvements are not attributable to the particular sparse

package chosen, this problem was also coded for solution

with the SuperLU sparse package [18]. This freely available

software is the result of US Government sponsored research

at the University of California, Berkeley, and is currently

supported by the National Energy Research Scienti®c Com-

puting Center (NERSC) at the Lawrence Berkeley National

Laboratory. If not the most advanced software in this

category, it appears at least to be the most current. For these

reasons, and also because it supports parallel computation

models, it was chosen by the IDA development team for use

in their program.

The results of this substudy are presented in Fig. 2. For

comparison purposes, the SPARK and Meschach results are

replotted in the ®gure. Thus, the uppermost curve in the

®gure is for the Meschach solution, while the lowest one is

for SPARK. The middle curve is for the SuperLU solution.

The upshot is that, although, SuperLU is somewhat faster

than Meschach (15 versus 48 s for n � 2000), SPARK is

much faster. More importantly, it is clear that SuperLU, like

Meschach, is performing at O�n2� as compared to O�n� for

SPARK.

In order to explore the full potential of the SuperLU

package, several solution options were tried. In particular,

each of the three column ordering options was tried and

found to have no noticeable effect on run-time. The option to

reuse the factoring information from the initial iteration

rather than factoring from scratch at each Newton iteration

was also tried, again without signi®cant effect. Finally, to see

if initial equation ordering had an impact, the driver program

was modi®ed to randomize this ordering in constructing the

Jacobian. Again, there was no signi®cant effect. To demon-

strate these ®ndings, the results for the natural ordering and

without refactorization and random ordering of the equa-

tions is overlaid with the case showing the greatest depar-

ture. The effects are so small as to be unnoticeable in the

plot. The explanation for these ®ndings is presented below

(see Section 5).

3. Laplace's equation example

The second benchmark problem, purposely chosen to be

not well suited to the SPARK methodology, is Laplace's

equation in two dimensions. This equation models many

physical phenomena, including heat transfer in a thin, square

plate with uniformly distributed heat source and uniform

boundary temperature. The problem is discretized by divid-

ing the square into a uniform grid of speci®ed size. Each cell

in the grid is represented by a nodal temperature Ti;j and is

governed by a heat balance equation:

qsi;j � �Ti;j ÿ Ti;j�1� � �Ti;j ÿ Tiÿ1;j� � �Ti;j ÿ Ti;jÿ1�
� �Ti;j ÿ Ti�1;j� (3)

where qsi;j is the heat source rate per unit surface area. As can

be seen, the internodal conductance is assumed to be 1.0.

This problem is coded for sparse solution in the Meschach

tutorial [19]. However, for this study, that implementation

was modi®ed to employ sparse LU factorization, since the

use of Cholesky factorization and sparse conjugate gradient

iteration in the original code applies only to symmetric

positive de®nite matrices, a condition satis®ed by the Lapla-

cian but not often found in general simulation problems.

For comparison, a program was written to generate

SPARK problem and input ®les for the same equation

system. The grid size was varied between 3 and 45, yielding

equation set sizes between 9 and 2025. Both SPARK and the

Meschach-based solver were compiled with the same com-

piler and optimization options.

In the initial SPARK implementation, each grid node was

represented with a SPARK macro object called node con-

structed with atomic conductor and sum objects from the

Fig. 2. Solution times for non-linear benchmark, SPARK vs. SuperLU.
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SPARK HVAC class library [20]. With this implementation

and a grid size of 19� 19, the SPARK solution time was

about 60 times that of the Meschach solver. While a weak

SPARK showing was anticipated for this problem, this huge

difference was a surprise, calling for further investigation.

The ®rst reason for the long SPARK run-times was found

to be representation of the node as a macro object. This

resulted in seven distinct equations for each node, four of the

form q � u�T2 ÿ T1� and three of the form a � b� c, giving

2530 equations for the grid size of 19� 19. Although, the

SPARK graph-theoretic algorithms were able to ®nd a cut

set of 342, a reduction of 86%, the Meschach implementa-

tion was hand-crafted so that there were only 361 equations

in the set to be solved. Moreover, the Meschach implemen-

tation assumed an internodal conductance of unity (Eq. (3)),

so no multiplications were needed. Therefore, even after

graph-theoretic reduction brought the Jacobian size down to

approximately the size seen by Meschach, the SPARK

model required many more arithmetic operations in evalua-

tion of each equation. In short, the numerical problems seen

by the two solvers were not the same, even though, they both

represented the same physical problem.

To try to get a more meaningful comparison, both models

were changed in several ways. First, the SPARK implemen-

tation was revised to more closely approximate the problem

as seen by Meschach. A specialized SPARK atomic object

class was written to represent the node as a single heat

balance equation with an assumed unit conductance, as in

the Meschach implementation. With this revision there were

only 361 objects in the SPARK model for the 19� 19 grid,

and the SPARK solution times improved considerably.

Then, to see to what extent the presumably more ef®cient

data handling methods in Meschach contribute to its speed

advantage, the SPARK solver was modi®ed to optionally use

either sparse or non-sparse vector-matrix data structures and

functions from Meschach when updating the solution vector.

These changes both produced substantial speed-up, with the

sparse handling option performing essentially as well as

Meschach (see Section 5).

Another difference observed between the two approaches

was that because SPARK is a general non-linear solver, it

employs Newton±Raphson iteration, requiring numerical

calculation of the Jacobian matrix at each iteration. In

contrast, the hand-crafted Meschach model is aware of

the problem linearity and constant coef®cients and conse-

quently sets up the conduction matrix only once, directly

from the given coef®cients. Since, this study was concerned

principally with solving methods for non-linear equation

systems, it was of interest to see how much of the run-time

difference was due to extra work in SPARK associated with

non-linear solving. However, rather than changing SPARK,

a second Meschach-based model was developed in

which the system of equations was set up for solution as

if they were non-linear. That is, a Jacobian was formed

numerically, as in SPARK, and Newton±Raphson iteration

was performed to obtain a solution. A Meschach sparse

solver and supporting vector-matrix routines were used to

calculate the solution vector for each iteration. Note that,

while this approach has the advantages of Meschach's

ef®cient data handling and sparse matrix operations, it does

not share SPARK's ability to reduce the Jacobian size.

The performance of the various solution methods is

summarized in Fig. 3. The three solid curves show SPARK

solution times versus total number of equations. The upper-

most curve is for solution with the current, standard SPARK.

The next lower curve was generated using the modi®ed

version of SPARK with the Meschach non-sparse handling

of the Jacobian as mentioned above, while the lowest curve

results from use of the sparse option. In all three cases, the

graph-theoretic matching and cutting were coerced by

selecting input options so as to get the theoretical minimum

cut set size while preserving diagonal dominance of the

reduced Jacobian. This is an important quali®cation and is

discussed further below.

The dash-line curve in Fig. 3 is for solution using the

Meschach-based Newton±Raphson solver described pre-

viously. Performance is seen to be signi®cantly better than

the standard SPARK, and somewhat better than the modi®ed

SPARK using non-sparse methods. However, it is not as

good as SPARK using sparse Jacobian handling.

The ®nal results in the ®gure are for the Meschach tutorial

program using sparse LU decomposition. These results

overlay almost exactly those for the modi®ed SPARK using

sparse Jacobian handling, so a separate trend line is not

plotted. However, this agreement is coincidental. Appar-

ently, the reduced Jacobian size in SPARK offers a speed

advantage that overcomes SPARK overhead costs such as

function calls and numerical Jacobian evaluation, which are

not done in Meschach.1

Fig. 3. Solution times for the Laplace's equation example.

1 In the current implementation, SPARK makes a call to a C�� function

for every equation evaluation.
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4. HVAC benchmarks

Going beyond simple benchmark examples, the numer-

ical methods used in SPARK were also evaluated by mod-

eling an air¯ow system employing discrete-time controllers.

The example used was a typical HVAC air¯ow network and

its associated control loops, a problem involving signi®cant

computational burden [16].

A number of steady state component models were imple-

mented as SPARK objects, including variable speed cen-

trifugal fans, ¯ow diverters, ¯ow mixers and control

dampers. In modeling air ¯ow, a square law dependence

of total pressure drop on ¯ow rate was used above a critical

¯ow rate and a linear dependence was used below the critical

¯ow rate to avoid known computational problems with air at

low ¯ow rates. Dynamic models included ¯ow sensors,

pressure sensors, rate limits, discrete-time proportional-

plus-integral (PI) controllers and fan control strategies based

on PI control.

Fig. 4 shows the system that was simulated. The positions

of the mixing box dampers determine the proportions of

outside and recirculated air that are ®ltered and cooled

before being supplied to the six zones of the building.

The positions of the terminal box dampers determine the

air ¯ow rates to the corresponding zones. The speed of the

supply fan is determined by a PI controller that regulates the

static pressure of the air in the supply duct. The speed of the

return fan is determined by a PI controller that regulates the

difference between the supply air¯ow rate and the return air

¯ow rate. For the purposes of the benchmark tests, the

various damper openings were treated as boundary condi-

tions. In the air¯ow network used to model the duct system

there were 28 ¯ow rate variables and 30 pressure variables,

three of which were boundary variables.

In order to assess the bene®ts of using SPARK methods, a

base case and two reference cases were constructed. The

base case was modeled with SPARK in the normal manner,

allowing the graph-theoretic techniques to perform reduc-

tion of the problem graph. The two reference cases were:

1. The system modeled using the HVACSIM� program

[2], as in the previous work [16].

2. The system modeled using SPARK, but inhibiting the

normal problem reduction techniques.

The use of the two reference cases enables the bene®ts of

the graph-theoretic techniques to be separated from the

effects of program architecture. For all three cases, the

simulation problem was a series of set-point changes for

each controller followed by a disturbance caused by pro-

gressive closing of the VAV terminal boxes.

In addition to these comparisons directed at assessment of

the importance of reduction, a side study was performed to

determine whether `̀ breaking'' of control loops offers com-

putational advantage. The interest in this derives both from

the needs of proper models of discrete time sample-and-hold

controllers, and from the introduction of arti®cial delays as a

computational device to speed solution.

Comparisons between HVACSIM� and SPARK are

shown in Table 1. In the ®rst comparison, `control loops

intact', the ¯ow network equations and the controller equa-

tions are solved simultaneously. The main result is that

SPARK is 15±20 times faster than HVACSIM�. The

obvious reason for the speedup is that SPARK achieves a

4:1 reduction in the number of variables in the iteration

vector.

In the second comparison, control loops broken, the set of

simultaneous equations representing the air¯ow network

and those representing the control system are solved sequen-

tially. This corresponds to breaking the algebraic loops, such

as by introduction of a sample-and-hold in the controller or

an arti®cial delay. Whereas, a signi®cant bene®t was gained

from breaking the control loops when using HVACSIM�,

there was no such bene®t when using SPARK. The reason

for this, as discussed in another paper [21], is that SPARK

®nds fan discharge pressures of the supply and return fans to

be good choices for break variables, so the computation

loops in question are broken regardless.

In order to determine how much of the SPARK advant-

age can be attributed to the problem reduction, these

techniques were disabled, producing the results shown in

Table 2 for the intact loops case. These results show that the

effect of the problem reduction techniques in SPARK is to

speed the benchmark problem up by a factor of 13. This is

Fig. 4. HVAC system.

Table 1

Comparison for HVACSIM� and SPARK

Control loops Time (s) Iteration variables

HVACSIM� SPARK HVACSIM� SPARK

Intact 1135 48.8 62 15

Broken 785 52.7 55 15

Table 2

Effect of SPARK reduction

HVACSIM� SPARK

unreduced

SPARK

reduced

No. of equations 62 62 15

Execution time (s) 1135 637 48.8
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approximately what would be expected from the reduction

in the number of equations.

To investigate further the question of whether the reduc-

tion of �4:1 in the number of problem variables in the

iteration vector observed in this example is likely to be

achieved in other HVAC simulation problems, a number of

series/parallel network con®gurations representative of

HVAC air¯ow networks were subjected to the SPARK

problem reduction techniques. Twenty con®gurations were

studied, with between 2 and 24 ¯ow elements and up to eight

parallel paths. In 15 cases, the size of the cut set, and hence

the number of iteration variables, was equal to the number of

parallel ¯ow paths. In four cases, the size of the cut set

exceeded by one the number of parallel ¯ow paths, and in the

remaining case it exceeded it by two. The ratio of the

numbers of equations in the unreduced and reduced pro-

blems ranged from 3.0:1 to 5.8:1, with a mean value of 4.4:1,

a similar value to that found in the example case described

above.

The question of whether control loops typically add to the

number of equations in the reduced problem was addressed

by considering a further six con®gurations that each

included one control loop. In ®ve out of the six cases,

adding the control loop did not increase the size of the

cut set in the reduced problem, and in one case it increased

the size of the cut set by one. The interpretation of these

results is discussed in [21].

5. Discussion

The above results con®rm that the SPARK methodology

offers signi®cant reduction in solution times relative to both

conventional and sparse matrix methods in the solution of

certain kinds of non-linear equation systems. This is borne

out most dramatically by the contrived non-linear bench-

mark problem, but is also quite clear from the HVAC control

application. However, in the case of the example involving

Laplace's equation, we observe that without some user

intervention, SPARK has dif®culty competing with sparse

methods. Understanding why this occurs is important in

order to guide improvement of the SPARK methods and to

delineate properly the class of problems amenable to

SPARK methods.

To understand the observed differences in run-times, it is

important to note that at the heart of the Newton±Raphson

non-linear solution process is the solution of a linear pro-

blem. That is, during each iteration the solution vector must

be updated by solution of the equations:

Jd � f �xk�; xk�1 � xk � d (4)

where x is the solution vector of size n, f the vector of

functions being solved, d the correction vector and J is the

Jacobian. Now, since J is n� n, calculation of its elements is

O�n2�, whether done numerically by finite difference (the

usual case), or from derivative formulae. Moreover, solution

of linear systems is in general an O�n3� process. Since,

evaluation of the functions f is only of O(n), evaluation of the

Jacobian and solving the linear set are the overriding factors

in determining run-time. Consequently, anything that can be

done to reduce the size of the Jacobian has a powerful effect,

especially for large problem size.

SPARK gains its advantage over conventional methods by

reducing the Jacobian size. It does this in two, separate ways:

decomposition and cut set reduction. Decomposition is

possible when the equation set is, in reality, a sequence

of separately solvable problems. SPARK is able to detect

this property automatically and carry out the decomposition

without intervention. For example, the non-linear bench-

mark problem with 100 equations and variables is decom-

posed into 25 subproblems (or in graph terms, strongly

connected components) each of size four. This alone would

reduce the run-time from O�1003� to 25� O�43�, i.e. a

factor of 625. Cut set reduction refers to reducing the sizes

of the Jacobians of the subproblems. This is done by an

algorithm that ®nds a small set of nodes in the problem graph

that breaks all cycles, called a cut set. The cut set variables

then form the iteration vector for the Newton±Raphson

process. Again, looking at the non-linear benchmark pro-

blem, a cut set of size one was discovered in each compo-

nent. Thus, the 25 Jacobians are all 1� 1, so the overall

theoretical run-time reduction is by a factor of 40,000. This

ef®ciency gain is only partially realized due to the overhead

associated with the SPARK implementation, but this ana-

lysis clearly explains the observed excellent performance for

this example.

A similar analysis shows why SPARK has dif®culties with

the Laplacian example. In this case, the problem graph

(Fig. 5) is more complex, with each node biconnected to

four neighbors. One consequence of this high degree of

interconnectedness is that the problem does not decompose,

so that it has to be solved as a single strongly connected

component. Another is that a small cut set is hard to ®nd. The

normal SPARK cut set algorithm works on the principle of

contraction, in which nodes with single incoming or out-

going edges are bypassed and removed, thereby, producing

progressively simpler graphs from which the cut set can be

deduced. However, there are no such nodes in this graph, so

the algorithm must revert to arbitrary removal of nodes into

the cut set [22]. In many problems, arbitrary removal results

in further opportunities for contraction. Such is not the case

Fig. 5. Graph for Laplace's equation example.

E.F. Sowell, P. Haves / Energy and Buildings 33 (2001) 309±317 315



here, so the algorithm continues to do arbitrary removal,

arriving at a relatively large cut set. For example, in the

45� 45 grid case (2025 nodes) the discovered cut set is

1894. This is a reduction in Jacobian size of only 5%, hardly

enough to overcome overhead costs. Indeed, with this cut set

the SPARK run-time was nearly seven times that shown in

Fig. 3. However, it is not dif®cult to see that a much smaller

cut set is possible for the Laplace's equation example.

Suppose that for odd rows in the grid, we mark break (b)

on every even column node, and apply the reverse policy in

even rows. This creates a checkerboard pattern on the grid in

which every marked node is surrounded by unmarked ones,

as shown in Fig. 5. Clearly, the marked nodes form a cut set,

since every unmarked node can be calculated given tem-

perature values at the marked ones. This policy can be

implemented in a SPARK model using the break_level

keyword, coercing the algorithm to choose the wanted

breaks. When this is done, the cut set size is n/2, producing

results shown in Fig. 3. In a future version of SPARK, it may

be possible to improve the matching and cutting algorithms

to detect regularities in the problem graph so as to auto-

matically arrive at smaller cut sets in problems of this nature.

While SPARK seeks solution ef®ciency through graph-

theoretic reduction, sparse solvers seek it by taking advan-

tage of sparsity in the Jacobian. The ®rst goal in a sparse

implementation is to reduce memory usage by storing only

non-zero elements in matrices. Secondly, special functions

are used to carry out operations such as vector-matrix

multiplications with operations performed only on non-zero

elements. The Meschach package is very effective in this

regard, as evidenced by its performance on the Laplacian

problem here. Indeed, the solutions times, shown in Fig. 3,

are not only (slightly) smaller than the best SPARK perfor-

mance, but also are of O(n2). The reason is that, regardless of

the size of the matrix, there are only ®ve non-zero entries in

each row, and consequently only ®ve multiplications and

four additions in the evaluation of each row-vector product.

That is, the per-row operations are constant rather than O(n).

It is sometimes claimed that sparse matrix methods

routinely do the equivalent of SPARK's graph-theoretic

reduction. The results presented here show clearly that this

claim is not true. SuperLU, arguably a state-of-the-art sparse

package, can do no more than discover and take partial

advantage of the natural block diagonal structure of the non-

linear benchmark problem studied here. This is because the

most commonly used row±column permutation strategies

(including all those available in SuperLU) are aimed at

reducing ®ll during LU decomposition rather than any

equivalent of the reduction available by graph-theoretic

operations directly on the non-linear problem. Nonetheless,

we are well aware that more advanced sparse implementa-

tions go beyond memory saving and ef®cient vector-matrix

operations. For example, there are algorithms that, if pos-

sible, reorganize the matrix into block-diagonal form, allow-

ing a partitioned solution that is entirely equivalent to the

strong component decomposition done in SPARK [7,13].

However, neither the Meschach nor the SuperLU package

currently has this feature, as evidenced by their rather poor

performance in our non-linear benchmark example. There-

fore, to be competitive with graph-theoretic methods, non-

linear solvers using sparse matrix packages must go some-

what beyond merely calling the linear solvers built into the

sparse packages. While we cannot assert that sparse matrix-

based solvers could not be adapted to incorporate these

ideas, we do claim that they are not routinely applied, if they

are indeed applied at all, in software currently in use in the

building simulation domain.

In spite of these arguments, we are not prepared to entirely

reject sparse methods. Indeed, an important outcome of this

study is the importance of employing sparse methods within

SPARK. This is because in problems such as the Laplace's

equation example, the Jacobian can still be quite sparse,

even after reduction. In the 45� 45 grid, only 1% of the

1012� 1012 Jacobian cells is non-zero. This explains the

dramatic reduction in SPARK run-time in Fig. 3 for the

sparse Jacobian modi®cation. Work now underway will

provide a sparse solution option in SPARK. This will be

selectable on a component by component basis.

The HVAC simulation benchmarks also provide insights

into the effectiveness of SPARK solution methodology.

From Table 1, we see that SPARK has a clear advantage

over HVACSIM� in simulation of detailed control models.

Table 2 also shows that a good deal of the advantage remains

even if reduction is not done, raising questions about what

other factors are at play. We are unable to fully answer this

question, but some contributing factors might be heavier

reliance on preprocessing of the problem in SPARK. That is,

the graph-theoretic analysis is carried out in a separate set up

program, which then generates a C�� ®le for compilation.

The output of the set up program is an ef®cient representa-

tion of the problem, with the computation sequence effec-

tively built into the data structures. This saves time that a

program like HVACSIM� has to spend moving data from

place to place and doing run-time branching checks and

control transfers. In a large problem (thousands of equa-

tions), there can be a signi®cant computational effort

involved in the preprocessing step. For short simulation

runs, such as the benchmarks reported herein, the time

involved might be comparable with or longer than that

required to run the problem. However, the SPARK approach

has clear advantages for longer or repeated runs.

6. Conclusions

The principle conclusion that can be drawn from this work

is that SPARK outperforms conventional and sparse matrix

methods for solution of problems that can be decomposed

and/or reduced with graph-theoretical techniques. Roughly

speaking, execution time savings will be O�mr3� where r is

the ratio of the largest cut set size to the number of equations

in the problem, and m is the number of strongly connected
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components into which the problem partitions. Typical

HVAC air ¯ow systems simulation models, including asso-

ciated controls, are among the problems that bene®t from the

SPARK solution methodology. The reduction techniques

produced close to the maximum reduction in the benchmark

HVAC problem, and there are indications that similar reduc-

tions can be expected in the broad class of problems invol-

ving ¯ow networks and their associated control systems.

Reductions in execution time of more than an order of

magnitude can be expected relative to full-matrix solvers,

such as HVACSIM�. While direct benchmarks were not

carried out for IDA, our indirect tests suggest that the sparse

methods employed in that program will not be comparable

to SPARK for problems in this class. On the other hand,

problems characterized by a high degree of interconnectiv-

ity, such as energy, mass or momentum transport in homo-

genous media, allow limited reduction and, therefore, are not

prima fascia candidates for SPARK solution methods. How-

ever, by proper coercion of matching and cut set selection,

signi®cant execution time reduction can still be achieved.

Finally, since the reduced Jacobian in homogeneous trans-

port problems is still very sparse, conventional sparse matrix

methods can be bene®cially applied after SPARK reduction.

When this is done, SPARK can be competitive with sparse

solvers for homogeneous transport problems, and probably

superior for system simulations in which reducible and

homogeneous transport components must both be solved.
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