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Synopsis

Analysis of roadway tasks in terms of the CIE 19/2 visibility parameters has been
restricted to calculation of VL at a fixed distance because there has been no way to adjust for
the change of apparent size with distance. We use a rough fit of the absolute threshold contrast
data as a function of luminance and size to allow the computation of VL as a function of
distance. Sample VL versus distance and VL versus time calculations are presented. A
preliminary estimate of detection probability as a function of time is compared to Gallagher's

measured results to see how current detection models compare fo real results.
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1. INTRODUCTION

A distinguishing feature of the roadway visibility problem is that angular target size
does not remain fixed. Unfortunately, the CIE technique for calculating visibility levels (VL)
is not convenient for comparing targets of different sizes [1]. It is possible, however, to
calculate a visibility index (V1), a quantity proportional to VL. Under the proper conditions VI
should provide a relative ranking of the visibility of targets. In an important experiment
Gallagher found that Vis measured at a fixed distance were correlated to driver performance
[2]. Several studies since have used VI to analyze roadway problems.

A disadvantage of using Gallagher's correlation is that it provides no insight into the
actual visibility at detection and hence provides no obvious way to produce a theoretical
estimate of detection distances. A simple analogy to threshold experiments indicates that VL
should be approximately constant at detection. To test this and a more complex hypothesis
based on a field-of-view detection model, we used a modification of Adrian’s procedure for
estimating VL as a function of size and luminance [3].

The calculations showed surprisingly poor agreement between theory and measurement
indicating that Gallagher's performance measure had a much larger nonvisual component than
previously recognized. It therefore seems likely that the relationship Gallagher found
between VI and performance is dependent on target reflectance, size, and vehicular speed.

Since our discussion presupposes some knowledge of the Gallagher experiment we



2

present a brief description of it here. Gallagher placed a grey (29% reflectance) or black (6%
reflectance) plastic cone in the center lane of one end of an 1800-foot straight stretch of
road. The speed of a vehicle and the location of braking or swerving maneuvers was
determined by sensors on the roadway. Driver performance was measured in terms of
time-to-target (TTT), the distance between the target and the earliest avoidance maneuver
divided by the vehicles speed. Drivers were not aware that they were part of an experiment.
Data was not kept if there was the possibility of interference from a second vehicle in the
test zone. Target visibility was varied by manipulating the lighting or the target location.
Visibility (V1) was measured in a separate experiment at a single fixed distance, and did not
include the effect of headlights. Gallagher fit TTT as a log-normal function of VI.

The next sections describe our calculations. We then present a discussion of our

analysis and our interpretation of the results.



Il.  THRESHOLDCONTRAST

CIE 19/2 focuses on relative threshold contrasts as a function of luminance [1]. Absolute
magnitudes are computed only for the reference four-minute disc. The CIE function is a
generalized geometric combination of the limiting contrast behavior at low and high
luminances. Thus, if g(L) and h(L) are the two limiting functions, the fit is (g(L)1/1 +

h(L)1/Mn, where n is a fitted constant.

In a recent paper Adrian suggests using this concept to get the threshold contrast (C))

variation as a function of size [3]. Adrian's fits are based primarily on the 1246 Blackwell

data showing C; as a function of size and luminance [4]. This data is not ideal for our purposes

because subjects were allowed to freely scan the target area for up to 30 seconds. The VL
concept is based on foveal detection during a single fixation, with the fixation time set by
convention at 0.2 seconds. We therefore decided to apply Adrian's approach to the more recent
Blackwell-Taylor data, which follows this constraint [5]. Since our interest is in luminances
and sizes appropriate for roadway lighting, we used the geometric averaging technique for
both variables and restricted the range of the fit.

The Blackwell-Taylor data cover the range from 0.5 to 60 minutes of arc, and from
3.4x104 to 3400 cd/m2. We fit the data with a standard deviation of 10%. This is almost
identical to the accuracy of the CIE reference function to the four-minute-of-arc data points
of this data set.

A major focus of this study was to examine the Gallagher data. In Gallagher's
experiment the luminance ranged from 0.3 to 6300 cd/m2. The target was a truncated traffic
cone 18 inches high with an average width of 6 inches. We treated it as an equal-area 12-inch
disc to get angular sizes and multiplied the fitted threshold contrasts by a constant shape
factor correction (SFC) factor to compensate for shape. Assuming an average speed of 30 mph
and a reaction time of about one second, a minimum distance of interest of would be 44 feet.
Gallagher measured responses at a maximum distance of 720 feet. Target sizes of interest
ranged, therefore, from 5 to 80 minutes of arc. A fit of a subset of the Blackwell-Taylor data

with luminance greater than 0.3 cd/m2 and size greater than 2 minutes of arc had a standard



4

deviation of only 6%, and differed significantly from the fit of the entire data set. Because
differences between scotopic and photopic vision are reasonable, we have chosen to use this

more restricted fit in our analyses. The fit is as follows:
Ci( L,S) = { 0.08583 x (1 +0.61075/L. )% +[0.15055 x (1 + 1.38151L.9-2)231/S }2, (1)

Here L and S are luminance (cd/m?2) and size (minutes-of-arc), respectively. It is important to
note that this fit does not extrapolate well to smaller sizes or luminances. For the interested

reader the full-range fit is:
Cy(L,S) = {0.0317 x [1 + 0.512/1.9-53 1134, [0.236 x (1 + 1.68/1.0-34 )2.09 1/ 5143 1140, )
A final important note about both these fits is that the Blackwell-Taylor data give a

forced-choice Cy, whereas the CIE reference function is based on the method of adjustments.

The latter contrasts are a constant factor of 2.5 times larger than the contrasts of Egs. 1 and 2
[6]. Our values are scaled by this constant to maintain consistency with the VL values used in

CIE 19/2.

The above contrasts are based on data for discs. The CIE 19/2 analysis is based on the
assumption that different-shaped objects will have the same relative C, curves, but the

absolute level of the curves may differ. Gallagher measured equivalent contrasts, and
Blackwell claims that these contrasts are 7.11 times the physical contrasts [2]. This value is
relative to the 4-minute reference disc, and therefore includes the effect of both object size
and shape. Gallagher's measurements were made at 200 feet where the equivalent size of his
target was 17.5 minutes. To get the shape-factor correction (SFC), we estimated the effect
of size alone by using Eq. (1) with L=1.0 cd/m? to estimate the size effect. This luminance
value was chosen as the average of the 21 night measurements; the two daytime
measurements were eliminated because they gave totally different results. The estimated
SFC from this procedure is 1.3.

The Blackwell-Taylor experiment was performed with a reference group of observers 20
to 30 years old. Age affects sensitivity to both luminance and contrast. We use age modifiers

that are similar to those in CIE 19/2, and are based on the same data [6]. The CIE 19/2
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The Blackwell-Taylor experiment was performed with a reference group of observers 20
to 30 years old. Age affects sensitivity to both luminance and contrast. We use age modifiers

that are similar to those in CIE 19/2, and are based on the same data [6]. The CIE 19/2
contrast multiplier (m4) consists of straight-line segments with breaks at 20, 42, and 64

years. We could see no evidence in the data for breaks at these points and decided to define a
contrast multiplier, CM(age), by linear interpolation between the points and a linear
extrapolation beyond them. CIE 19/2 separates the luminance correction into two factors (s
and t), to account for two different mechanisms. The two factors have sharp changes in
slopes, which Blackwell hypothesized arose from different aging processes [6]. We found the
arguments both for the method of separating the data into the two factors and for the sharp
changes in slope unconvincing and refit the data as one factor with a simple log-linear
function:

LM(age) = 100-07 - 0.009 x (age -20) 3)
where LM is the luminance multiplier. This fit has a standard deviation of about 7%, which is
about as good as the CIE fit, and it is a much simpler fit. The success of this simple fit shows
that the added complexity of the CIE fit is not justified by the available data.

Our equation for VL is:
VL(L,S,Cp,age,SFC,DGF,TAF) = Co/ [ 2.5 x CM(age) x Cy(L x LM(age) ,S) ] )]
with
Ce = Cp x SFC x DGF x TAF.

Cp, DGF, and TAF are, respectively, the physical contrast of the target, the disability glare

factor, and the transient adaptation factor. Note that with our definition of LM and CM the
multipliers do not equal one over an extended age range, as in CIE 19/2, and are slightly

different from one for 20-year-olds. We discuss DGF and TAF in the next section.



[l VL CALCULATIONS

The DGF and TAF factors are defined in CIE 19/2 [1]. In most papers TAF is set at one
[1,2,7,8]. This appears to be a good approximation for analysis of the Gallagher experiment. In
Gallagher's experiment, data was not recorded when more than one vehicle was on the course,
thus eliminating the extreme luminance variations that could make TAF substantially
different from one. In addition, variability in TAF between runs should be small because the
luminance patterns are similar.

In Gallagher's experiment DGF was measured at the reference distance. No information
was reported on the luminance pattern or DGF at other distances, and no attempt was made to
include the effect of headlights. We calculated VL both with and without low-beam
headlights. In our calculation without headlights we assume that Gallagher's DGF values will
be largely independent of car-to-target distance. There probably is a cyclic change in DGF as ¢
vehicle proceeds from one street light to the next, but we assume that this variation is small
relative to the variation in VL over the distances of interest. A partial validation of this
view is that the range of DGFs for Gallagher's targets, which were placed in a variety of
locations under several different lighting conditions, was only 15%. By comparison our
calculated VL values change by a factor of 10 as the driver approaches the target.

To calculate VL with headlights, we took advantage of the fact that DGF is a function of
the background luminance and a veiling luminance, both of which were measured by Gallagher.
We recalculated DGF adding a headlight contribution to the background luminance and assuming
that the contribution to veiling luminance was small and could be ignored. This approximation
has been used in other recent papers [8,9]. An estimate of its error indicates that it should be
valid to a few percent as long as the headlight contribution to the background luminance is
comparable to or less than the street lighting contribution. In the Gallagher experiment
distances small enough to give larger errors were too small for the driver to avoid the target
and therefore were not of interest in our preliminary calculations.

The calculation of contrast is also constrained by the available data. There are various
ways one can evaluate luminance distributions to calculate target and background luminances
[8]. Gallagher reported averages, and centered the background measurement on the target

location [10]. We assume that the street lighting contributions are independent of the
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car-to-target distance. Headlight contributions were estimated using the iso-candela plot and
headlight height and separation from Keck's paper, target reflectances from Gallagher's paper,
and pavement back-reflectances from Bhise's formula [2,7,8]. The target was assumed to be
centered between the headlights. Linear interpolation was used with the candlepower data, so
mean values were simply estimated from the center of mass of the target area.

To calculate VL versus time to target (TTT), we assumed average speeds of 25, 30, and
35 mph to calculate the distances. Explicit information on speeds was not available from
Gallagher's papers [2,10]. At these speeds, distances of interest are 40 feet or greater, and
we therefore did not include corrections for headlight-to-wheel, or driver-to-wheel
distances. Gallagher had no way of obtaining a driver's age. To estimate the effect of age we
built age pyramids based on the 1970 and 1980 Census data. Calculations were performed at
10-year age intervals from 20 to 80 years old. The average age from the Census data was 41,

and we found that calculations for age 40 were close to the average.



IV. RESULTS

Our interest was to better understand Gallagher's results. The first quantity we
evaluated was VL at the mean detection time (DT), where we assumed DT to be equal to
Gallagher's mean measured TTT plus an estimated reaction time. We hoped to find that these
values would be approximately constant. Our argument was that if visibility was the limiting
factor for DT, then targets are detected after visibility rises to approximately the same level.
The mean DT is then just a measure of how close the target must be before its VL is large
enough to make it visible. Figure 1 shows the results of our calculation for Gallagher's target:
under the assumptions of: no headlights, 30-mph speed, 40-year-old driver, and one-second
reaction time. The plot is fairly insensitive to the last three assumptions. Furthermore, as is
shown later, headlights have little effect on the low-reflectance data points past 3.5 seconds,
and of course no effect on the two daytime points.

Figure 1 shows some clustering of the VL values. The two daytime points, however, are

not the same as the remaining points. The targets in the two daytime runs should be visible

anywhere on the course, as their VL values are above 10 even at 720 feet (TTT = 16.4
seconds). The mechanism limiting TTT for the two daytime points is clearly not the same as
that for night points, and they should therefore be treated separately in any extrapolations of
the Gallagher fit.

Figures 2 and 3 show the nighttime points only, first without, and then with, the
contribution from low-beam headlights. There are several points of interest. Headlights
clearly affect the visibilities at the mean DT, and are particularly important for targets
having high reflectance (29% vs. 6%) or poor visibility (low mean DT). This means that
headlight status and target reflectance must be considered in addition to VI as correlates to
the mean TTT. The shape of the lower part of the Gallagher curve is probably dependent on the
reflectance of the target and on whether low- or high-beam headlights are used.

A second point of interest is that the high-reflectance, positive-contrast targets appear
to require higher visibilities for detection than other targets. In a discussion with Gallagher,

he noted that the low-reflectance cones were always seen as an object on the road, whereas
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the high-reflectance cones were first seen as a light stripe on the road, and then popped up as
cones as the driver approached them. This difference obviously affects the time at which the
driver recognizes the target as an obstruction, and depends upon more subtle visual cues than
simple detection of the target. Animportant question is how much of the effect persists for
different shapes, sizes, colors, and reflectances. A cone may be a special case, as it can be
seen as a two-dimensional object in perspective. Size may also be an important parameter in
identifying the object as three-dimensional. It is not clear that DT at a given VI would be as
low for a person wearing light-colored clothes, as it was for a light-colored cone.

Perhaps the most noticeable features of the figures 2 and 3 are the distinct trend in VL
with respect to mean TTT and the extremely low values of VL at detection for the less visible
points. The lowest value in figure 3 represents a break-down in our assumption that visibility
increases monotonically as the driver approaches the target. This is demonstrated in figure 4
where VL is plotted versus TTT for two targets under the convention that negative contrasts
have negative VLs. The figure shows that headlights decrease the magnitude of VL for
negative-contrast targets relative to no headlights until the contrast is driven positive. For
the more visible target the magnitude of VL is still increasing at the mean TTT. This was
typical of most of the targets in the Gallagher experiment. However, the target having the
lowest VL in figure 3 (the low visibility target in figure 4) represents a pathological case
where VL was near its minimum at the mean TTT.

Eliminating the problem targets does not eliminate the trend in figures 2 and 3. It does
eliminate the lowest VL values, but points remain in the range of one to two. We have
considered a number of possibilities to explain the trend. At the lowest values of TTT, we

may underestimate VL. For instance we use average luminances. Distant targets appear

small, and an average seems reasonable. However, at a distance of 100 feet or so (TTT = 1.6),
target size is 30 minutes of arc, and internal contrasts may make all or part of the target
more visible than predicted by the average contrast. This may be a particular problem for the
headlight calculation because the driver is near the specular angle.

A second factor that may bias our calculation is our assumption that luminances from

the street lights do not change as the driver approaches the target. This seems reasonable for
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the target luminance because the target has a diffuse surface, the driver is not near a specula
angle with respect to street lights, and the angular changes are small. It is less reasonable
for the background luminance because the road is very specular at the grazing angles at which
it is viewed. Since street lighting is periodic, there should be a small cyclic variation in
contrast, and of course VL, as the driver approaches the target. When VI (contrast) is high,
these variations would just introduce noise in the results, but when it is low the variations in
VL may become large relative to the mean VL and may be responsible for detection of the
target.

There is a small error in our estimation of detection time at the lowest values of TTT.
The driver who does not react to a target is credited with a TTT of zero. Since we add a fixed
reaction time to TTT in order to estimate detection time, our estimate is incorrect if the
driver sees the target but does not have time to react. Only about 5% of the drivers failed to
react even at the lowest VIs, hence this is a small error [2].

The above considerations suggest that the real VLs at low values of TTT are higher than
our estimates, thus perhaps eliminating some of the difference between the low and high TTT
points. However, there appears to be a trend in VL for the high TTT points alone. This
suggests that the overall trend and difference is real. Assuming that the trend is real, either
we are overestimating visibility at large distances or the drivers did not react when they
detected the target. It is possible that a driver feels no need to react quickly if the target is
detected sufficiently far away. The distance that is sufficient depends upon the driver's
speed. Gallagher appears to have assumed that the VI-versus-TTT relationship would be
relatively unchanged at different speeds. However, visibility of the target depends on
distance. We therefore believe that the first-order effect of speed would be to directly scale
the TTT values. Under this hypothesis, this scaling would not affect the highest visibility
points, and in fact TTT might become greater at higher speeds to allow for additional braking
distance. The net effect is a more rapid change in TTT with VI.

A second possibility is that the driver detects the target earlier than is shown, but does
not recognize it as an obstruction. This ties in with Gallagher's comment about the grey (29%
reflectance) cones initially looking like stripes on the ground. There may also be a size effect

here in that it is difficult to tell that a small, distant object will have to be avoided. This
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suggests that a large target may be avoided earlier than a small target of equal VI. Again the
effect is to make TTT vary more rapidly with VI.
There is one other size effect to comment on before proceeding. Threshold contrasts go
as size-squared when the target is small and eventually saturate as size increases [5]. A
target that is bigger than the Gallagher target will be less visible than Gallagher's at
distances less than 200 feet (the measurement point) and more visible at greater distances.

The effect this will have on TTT depends on the visibility of the target at 200 feet.
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V.  TME-TO-TARGET CALCULATIONS BASED ONDETECTION MODELS

Given the number of possible confounding factors described previously, it should come
as no surprise that we had generally poor luck in predicting TTT. We nonetheless briefly
describe some of the calculations here because they provide some insight.

The CIE 19/2 model unfortunately provides only an empirical fit to data, and cannot
predict accuracies beforehand [11,12]. We have therefore used a field-of-view search model
instead [13]. This model is based on an extension of the threshold-contrast function to include
the degree to which the target is off the view axis. This makes VL a function of view angle
eccentricity, and lets us extend estimates of detection probability as a function of VL to
off-axis targets [1,13]. For consistency, we use the model in reference 13, but all the models
should give similar results. Assume that the target is located within a target field of some
fixed size. The probability of detecting the target in any particular glimpse is the integral
over the product of the probability of the view axis being a given distance from the target, and
the probability of detection at that distance. The probability of detection after a given
number of glimpses can be calculated from the individual glimpse probabilities. If the target
field is noisy (extraneous targets or nonuniform luminances) the effective VL is reduced and
the detection probabilities will be affected accordingly.

In our case VL was calculated as described earlier, and the number of glimpses is fixed
by the speed of the vehicle and the fixation time per glimpse. We assumed that the target
field was equivalent in area to a 5-degree cone [14]. The noise factor always reduces VL,
however, Inditsky et al. noted that there is little information about the magnitude of
reduction [13]. A constant value of 1/2 was used as an example in the Inditsky paper, and we
found that this gave rough agreement with the short TTT points in the Gallagher experiment.
Figure 5 shows the best fit with the above parameters.

Calculations were done in 10-year age blocks, but in the interest of clarity, only the
average and half the blocks were plotted. In this example the average curve has a mean and
standard deviation almost identical to Gallagher's measured curve. Figure 2 of Gallagher's
paper indicates that 5% or more of the drivers failed to react to this target. This is
consistent with the 7% level predicted by our average curve. The roughly Gaussian shape of the

average curve is also consistent with Gallagher's results.
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It appears that with small increases in effective VL, similar good agreement can be
obtained for other short TTT points. This is encouraging because it supports modeling the

problem with VL, and is consistent with our previously mentioned belief that we only slightly

underestimate VL. In contrast to this situation, the fit to points with TTT > 3 seconds aisre
disastrous. Using the above assumptiohs, predicted mean TTTs are approximately a factor of
three too large. To get correct mean times, the effective VLs must be reduced by a factor of 6
instead of 2. This still does not give the correct average curve shape. Instead it pulls apart
the age distributions so that for the average curve, the standard deviation, and probability of
not reacting to the target, are grossly too large. This result adds weight to the notion that

low and high TTT points differ.

Two mechanisms for this difference were suggested in the previous section.
Consideration of the noise factor suggests yet a third mechanism. It seems logical that a
noise factor should depend on the local complexity of the scene. For a given solid angle, the
more distant the view point the larger the number of objects that will fit within the solid
angle. In short, the complexity factor may be a function of the distance to the view point,
instead of being uniform over the field of view. This kind of mechanism does not pull apart
the age distributions and therefore should produce curves that are consistent with the
measurements. Our work is still in an early stage; we have not attempted to distinquish

between the different mechanisms, and in fact may not have sufficient information to do so.
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VL. DISCUSSION

There is, of course, interest in using visibility calculations for street lighting design
and evaluation. In a recent paper, Shelby and Howell investigated the distribution of VI for a
standard target as a function of distance from a fixed car [8]. A question they raised is what
is the best single measure of these distributions for design or evaluation. If we relate this
question back to the Gallagher experiment, clearly we are interested in the probability that
the driver can avoid a fixed obstacle. This probability obviously depends on vehicular speed.
For instance, at 30 mph, Gallagher's estimate of the safe intercept time is 2.0 seconds.
Adding a one-second reaction time gives a total time equivalent to 130 feet at 30 mph. At 15
and 45 mph the distances are 44 and 264 feet. These distances will vary somewhat if we
allow for swerving, but the general point is clear: useful visibilities are those that allow the
driver to safely avoid the target. Points closer than the safety cut-off distance should not be
included in visibility calculations.

Simplification of the problem probably depends most on whether headlights affect the
visibilities at the distances of interest. If headlights are unimportant, then VL at a fixed
distance may be a useful guide to the entire distribution, and ultimately to the probability of
detection for the target. At this point the problem becomes evaluating VLs for different
target sizes and locations. Until we better understand the relationship between visibility and
probability of detection, it is probably best to simply measure the moments (mean, variance,
skewness, and so on) of the VL or log(VL) distributions. Experience with other visual
performance problems indicates that the latter distribution probably is most appropriate
[1,15]. Unless the relationship between visibility and detection probabilities is not
monotonic, or is pathological, the latter should scale with the mean VL, or at worst be
computable from the first few moments.

A feature of the theoretical calculations that may be important is that the safety
margin between the time the target is detected and the time the driver has to brake in order
to avoid the target is a very sensitive function of speed. As noted in the previous section,
detection is related to the distance to the target, not the time to target. We therefore
expected that the first-order effect of a change in speed would be a compensating change in

TTT. Inthe detection calculation the number of available fixations is an important factor, and
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this factor also depends on speed. When the TTT is fairly large, the detection distribution

tends to be fairly broad and low as a function of time (see the age = 20 curve in figure 5), and
a change in the number of available fixations changes primarily the width and not the mean of
the distribution. However, when visibility and TTT are low, the number of fixations becomes
important; thus detection time can go as speed-squared. As Gallagher noted, the intercept
time (IT) for safe braking increases linearly with speed. Gallagher claims IT is 2.0 seconds at
30 mph. Assume a detection time (DT) of 4.0 seconds and a reaction time of 1.0 second. This
gives a safety margin of 1.0 second. Now let the speed be 35 mph. This increases IT to 2.33
seconds, and decreases DT to 2.94 seconds, leaving a "safety margin” of -0.39 seconds. At
higher visibilities and speeds the relative changes in DT will be smaller, but the higher
magnitude of DT means that there is little net improvement.

The situation may be somewhat better if the driver can swerve instead of brake, but the
safety margin will still be a rapid function of speed. These conclusions are particularly
pertinent for older drivers, who often do not see well.

Much of the above analysis assumes that roadway safety can be correlated to probabilies
of avoiding fixed targets. A great deal of work needs to be done in further specifying what
situations create accidents. At this point one can only hope that the VL concept will be

germane to real problems.
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VI, CONCLUSIONS
Our analysis shows that the visual detection problem is much more complex than
indicated by the excellant correlation Gallagher obtained between VI and TTT. Headlight
status (off, low-beam, or high-beam), target reflectance and size, and speed must be
considered when evaluating visibility. Although we have partially clarified the role of some
of these parameters, we have raised more questions than we have answered. There is an

obvious need for more research.
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