LBL- 37398
UC- 1600

TECHNOLOGY DATA CHARACTERIZING WATER HEATING IN COMMERCIAL
BUILDINGS: APPLICATION TO END-USE FORECASTING

Osman Sezgen and Jonathan G. Koomey

Energy Analysis Program
Energy and Environment Division
Ernest Orlando Lawrence Berkeley National Laboratory
University of California
Berkeley, CA 94720

December 1995

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of
Building Technologies and Office of Planning and Analysis, and the Office of Environmental Analysis, Office of
Policy, Planning, and Analysis of the U.S. Department of Energy under Contract No. DE-AC03-76SE00098.



‘gﬁ Recycled Paper



ABSTRACT

Commercial-sector conservation analyses have traditionally focused on lighting and space
conditioning because of their relatively large shares of electricity and fuel consumption in
commercial buildings. In this report we focus on water heating, which is one of the neglected end
uses in the commercial sector. The share of the water-heating end use in commercial-sector
electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy
consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds
to 1.6 quads of primary energy consumption.

Although smaller in absolute size than the savings associated with lighting and space conditioning,
the potential cost-effective energy savings from water heaters are large enough in percentage terms
to warrant closer attention. In addition, water heating is much more important in particular
building types than in the commercial sector as a whole. Fuel consumption for water heating is
highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads,
respectively); water heating's share of fuel consumption for these building types is 35%, 18% and
32%, respectively.

At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set
characterizing water heating technologies in commercial buildings as well as a modeling
framework. We present the data and modeling framework in this report. The present commercial
floorstock is characterized in terms of water heating requirements and technology saturations.
Cost-efficiency data for water heating technologies are also developed. These data are intended to
support models used for forecasting energy use of water heating in the commercial sector.

The representation of the water-heating end use is complicated because the number of
configurations of plant types and systems is quite large. Also, energy use is a complex function of
the plant and the system properties. In this report, we present a method for segmenting the water
heating equipment market. We then develop relevant data in terms of this segmentation to create a
consistent forecasting framework.
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1. INTRODUCTION

Commercial-sector conservation analyses have traditionally focused on lighting and space
conditioning because of their relatively large shares of electricity consumption (33% and 40%,
respectively), and the large share of space conditioning in fuel consumption (63%), in commercial
buildings. In this report we focus on water heating, which is one of the neglected end uses in the
commercial sector. The share of the water-heating end use in commercial-sector electricity
consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy
consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds
to 1.6 quads of primary energy consumption.

Although smailer in absolute size than the savings associated with lighting and space conditioning,
the potential cost-effective energy savings from water heaters are large enough in percentage terms
to warrant closer attention. In addition, water heating is much more important in particular
building types than in the commercial sector as a whole. Fuel consumption for water heating is
highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads,
respectively); water heating's share of fuel consumption for these building types is 35%, 18% and

32%, respectively.

Forecasting commercial-sector energy consumption is an important issue for utility capacity
planning since the commercial sector is the fastest growing consumer of energy. Previously,
utilities forecasted electricity and gas consumption based on time series analysis. More recently,
with the growth of demand-side management (DSM) programs, there is a need to forecast by
building type, end use, and technology options within an end use. Forecasting models in which
energy consumption is disaggregated by technology option are also useful to state and federal
policy makers in their assessment and implementation of technology-specific standards and

policies.

The Electric Power Research Institute (EPRI) develops and maintains the commercial-sector end-
use forecasting program COMMEND (Commercial End-Use Planning System) as well as end-use
programs for the residential and industrial sectors. To address the above-mentioned analysis
needs, EPRI has enhanced COMMEND to allow modeling of specific lighting, space conditioning
(HVAC), refrigeration, and office-equipment technology options. The EPRI contractor for this
effort, Regional Economic Research, Inc. (RER), worked with Lawrence Berkeley National
Laboratory (LBNL) in the development and testing of the technology modules contained in
COMMEND 4.0. LBNL is also providing assistance in the development and refinement of

technology data for the model.

Although EPRI has not developed the option for modeling discrete water heating technologies, we
at LBNL have developed and refined a base-year data set characterizing water heating technologies
in_commercial buildings and a modeling framework that could easily be used to enhance
COMMEND or another commercial end-use forecasting model. The data and modeling framework
are presented in this report. We characterize the present commercial floorstock in terms of water
heating requirements and technology saturations. We also develop cost/efficiency data for water
heating technologies. The data provided are intended to support models used for forecasting
commercial-sector energy use for water heating. The data presented here can also be converted to
their reduced form and utilized in COMMEND.



2. FORECASTING MODEL AND DATA REQUIREMENTS

Recent end-use forecasting models for the commercial sector forecast future energy consumption
by fuel, end-use, and building type. The models start with a user-provided characterization of the
present status of related parameters for the commercial sector and forecast future consumption
levels by simulating user decisions on energy end-use technology options. In the models, the
commercial-sector floor stock is segmented into building types and vintages. Energy use is
segmented into different end uses. The model user characterizes the base year by providing input
on energy use intensities within this framework.

In addition to the base-year characterization, the models require two major groups of data in order
to generate future consumption patterns. The first is a set of cost/efficiency data on end-use
technology options, and the second is a set of data on the decision behavior of consumers.
Technology options are generally represented by technology tradeoff curves that relate operating
costs to equipment costs. This form can be viewed as a variation of the cost/efficiency function.
For end uses that may consume more than one fuel type, such curves are defined for each fuel type
to facilitate the modeling of fuel-switching decisions. Consumer decisions are based on parameters
such as discount rate preferences, consumer resistance to change, short-term utilization elasticities,
and consumer price expectations based on past fuel prices.

The decision makers are segmented into levels of discount rate preferences. Models allow for
several groups with different discount rate preferences. The discount rates for commercial-sector
energy decisions are often quite high compared to the typical discount rates used in business.

Fuel prices and growth of commercial floor space are exogenous to these models. Based on these
exogenous time series data for each forecast year, the model incorporates choices for new
buildings and retrofit situations into the stock, building up the future forecast. Fuel switching and
technology efficiency-level choices are generally based on lifecycle cost (LCC) minimization

criteria.

As mentioned above, each end use was represented using a single cost-efficiency function.
Although cost-efficiency functions are built using market data, any information regarding which
technology option a certain point on the function actually represents disappears once the function is
created. Thus, market shares cannot be attributed to specific technologies. Although it is possible
to analyze several policy options such as performance standards using cost-efficiency functions, it
is nearly impossible to analyze policies addressing individual technology options.

In some of the most recent forecasting models, more detailed options are available and allow the
user to model specific end-use technologies. Figure 1 depicts the proposed water-heating end-use
model logic. The general features of the detailed end-use representation are as follows:

» In place of general end-use concepts, an expanded set of technology definitions is used in the
models. For example, instead of representing the end use by a curve on which the annual
energy use decreases as the initial investment increases, we do it by shares of explicit water-
heating technologies, service levels, and operating hours, together with costs and efficiencies

for these discrete technology options.

» The level of detail in the models recognizes the complexity of commercial end-use systems and
deals explicitly with conservation measures that affect energy use for these systems.



Figure 1. Water Heating End Use Model Logic
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When designing a water-heating module, the model features specific to the water-heating end use
would include the following:

The water-heating plant and distribution system would be modeled separately.

Starting with hot-water demand for different building types, the model would determine the
heat loads (for hot water) at the point of use.

The system model would account for the heat losses in the distribution system and also
estinate the electricity use of pumps utilized by the system.

The plant model would determine the energy used for generating heat to satisfy the water-
heating load and account for standby losses.

The model would deal directly with enumerated lists of plant types (e.g., electric self-heating
storage tank, water-heating heat pump, tank heated by space-heating equipment, residential
storage system); plant design options (e.g., models with one or more of: tank insulation,
intermittent ignition — spark or hot surface, active flue damper, condensing combustion
system); system types (centralized systems and distributed systems); and system conservation

measures (insulation and pump controls).

Changes in equipment efficiency levels can be modeled either directly through efficiency
equations or in detail through the specification of detailed design options.

End-use forecasting models expanded to address individual technology options will require
characterization of the present floorstock in terms of service demand, energy technologies used,
and the cost-efficiency attributes of energy technologies available to consumers for new buildings
and retrofits. This report provides these types of data for water-heating end uses. Another major
type of data required is related to consumer choice modeling. This report does not consider how
future choices of users may change or what the choice parameters of decision makers are. Table
1 shows how the technology data required for forecasting is represented and where these data can

be found in this report.

Table 1. Representation of Efficiency, Cost, and Saturation

Energy Technology Efficiency Cost Saturation

Plant Types include product Efficiencies presented in | Cost is a function of Saturations of product
classes such as self-heating

the tables for the plant both the storage classes by building type

storage water heaters. Plant
types are further disaggregated
by fuel type and fuel-specific
design options.

include recovery
efficiency and the annual
efficiency. See Tables 7-
11.

capacity and heat input
rate. See Tables7-11,

are presented in Table 4.

Saturations of equipment
within a product class are
presented in Tables 7-11.

System Types consist of
centralized systems and

distributed systems. System
features include insulation and
pump controls.

The heat loss and
electricity use of pumps
are indicators of system
efficiency. Thus,
conservation measures
affect either the heat loss
or pump electricity use.
See Table 6.

Pump and pipe costs as
a function of size are
presented. Incremental
costs are presented for
conservation measures
over the base case. See
Table 6.

Saturations of system
types by building type are
presented in Table 4.
Percentage of floor area
served by a particular
system type equipped with
a conservation measure is
presented in Table 6.




3. SERVICE DEMAND

We characterize two aspects of water heating service demand in this report: (1) annual hot water
requirements, which are used to determine the energy used to generate the necessary heat for the
hot water service, and (2) peak demand for hot water service, which is the main factor in sizing the
water-heating equipment and therefore in the equipment cost. Characterization data are provided
for small and large offices, fast-food and sit-down restaurants, retail stores, grocery stores,
warchouses, elementary schools, junior high and high schools, health facilities, hotels, and

motels.

Annual hot-water requirements for the different building types are presented in Table 2. Annual
hot-water load is a function of the hot-water temperature differential, therefore Table 2 presents the
temperature requirements for different building types. Annual load is also a function of the
operating schedule, therefore we present the number of operating days. Hot-water demand is
characterized by the number of gallons per unit per day (the definition of a unit varies by building
type). In offices and educational facilities, units represent the number of people using the facility.
In restaurants, units represent the number of meals served. In hotels and motels, units represent
the number of rooms. In stores and warehouses, units represent the number of employees. In
healthcare facilities, units represent the number of patients. The number of units is mapped onto
the floor area using the prototypical data from Sezgen et al. [3] which are based on EIA data [4].
Using Table 2, one can start with the floor area of a certain building type and determine the hot-
water demand in terms of annual gallons at a given temperature differential and the annual hot-
water heat load. As discussed below, the annual heat load is the main factor in determining the

energy use for water heating.

Peak hot-water demand is characterized by gallons per hour at the peak time. Given the floor area
for a certain building type, peak hourly load can be calculated from the water temperature
differential, hourly volume per unit, and units per floor area. These peak hourly requirements are
to be satisfied by the combination of the storage tank and the heat generation capacity of the plant.
The tank and heat generation capacity are presented in Table 3. The tank capacity is 80% of the
peak hourly volume. The heat generation capacity is assumed to be equal to the peak load. These
assumptions reflect conservative design practices in this field.
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4. WATER-HEATING DISTRIBUTION-SYSTEM TECHNOLOGIES

Centralized systems and distributed systems are the two competing technology categories for
delivering the hot water generated at the plant. Each system type has advantages and
disadvantages, and choice of one over the other depends on issues such as space requirements,
initial cost versus operating cost, and peak water-heating load. In this section, we present the cost
and efficiency attributes for a base case for each type of distribution system and for conservation
measures over the base case. For centralized systems, effective conservation measures are pipe
insulation and pump controls that turn the pumps off when there is no demand for hot water. For
distributed systems, pipe insulation is the conservation measure considered.

Demand-limiting technologies such as efficient showerheads can also be considered part of the
distribution system. At this time, hot water demand is characterized in terms of the volume of hot
water and there is little information on what proportion of hot water is supplied through efficient
showerheads and faucets. As information on the penetration of efficient showerheads and faucets
becomes more available, analysts will be able to estimate the proportion of hot water demand that is
attributable to them and incorporate this information into their forecasts.

Saturations

The saturations of the plant classes served by the two competing distribution technology categories
are presented in Table 4. The saturation data are based on EIA data [6] and are disaggregated by
building type. In the table, market share represents the percentage of floor area served by the
distribution system type. It is clear from this table that residential-type water heaters have a large
market share in commercial buildings and are predominantly utilized as part of distributed systems.

The efficiency and cost of a centralized system is a function of the pipe length. Systems with a
distance from the plant to the point of use of more than 100 ft. typically utilize circulation systems.
This is to prevent water waste (the water in the pipe cools down during the unused period and
during the subsequent use, some amount of water is discarded). In our presentation, we assume
that all centralized systems use circulation systems, and that none of the distributed systems use
circulation pumps. In Table 5, we estimate the pipe length for centralized systems and point-of-
use systems by building type. The building prototypes are taken from Sezgen et al. [3] and were
developed based on EIA data [4].

Saturations of systems equipped with the different conservation measures are given in Table 6.

Efficiencies

The efficiency of a distribution system is determined by the heat loss from the pipes to the
surroundings and the electricity used by the circulation-system pumps. Table 6 presents such
properties. Typical electricity consumption for a pump is assumed to be 1.5 - 2 kW/HP. Pump
controls reduce the electricity use in proportion to the ratio of unused hours to total hours. Heat

loss is proportional to pipe diameter and length.

Costs

Distribution system costs incilude pipe and pump costs. Pipe costs are a function of pipe length
and material. Pump costs are a function of the pump size. Because distributed systems do not

require pumps, only pipe costs are applicable.
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5. WATER-HEATING PLANT TECHNOLOGIES

At the most basic level, water-heating plant types are categorized as those that are compatible with
centralized systems and those that are compatible with distributed systems. Plant types that go
with centralized systems are self-heating storage tank systems, tanks heated by space-heating
equipment and tankless coil water heaters. Plant types that go with distributed systems are the
residential-type storage systems and point-of-use water heaters. There may be cases where
residential-type storage systems are used in a centralized system but the market share for such
applications is low. Tables 7 through 11 present the cost, efficiency, saturation, and service
life data for the above plant types. These tables include design options with additional measures
when applicable and/or important. Each table covers equipment powered by electricity, natural

gas, and fuel oil.
Self-Heating Storage Tanks

The options for self-heating storage tanks presented in Table 7 include models that were available
before 1994 and the efficient models that meet the 1992 EPACT requirements.

Electric storage-type water heaters are well suited for thermal storage types of applications. The
water can be heated during off-peak hours and stored until the time of use. The efficiency of such
equipment can be further increased by increasing the insulation. Since the top and bottom of an
electrically-heated tank can also be insulated, the standby losses of such tanks are lower than for
tanks heated by gas or fuel oil. The cost of a commercial-size electric storage-type water heater is
higher than the cost of a residential-type water heater because of code requirements and the limited

market for such equipment.

Heat pump water heaters are generally two to three times more efficient than conventional electric
water heaters when the heat extraction at the evaporator is not put to use in a cooling application. If
the operation of the heat-pump water heater coincides with some cooling load, and if the same
equipment is used for space cooling, then the resulting efficiency will be even higher — the
coefficient of performance (COP) may reach about five for high-temperature water heating and six
for low-temperature water heating. There are even more efficient heat-pump water heating
technologies that are not yet widely available. Nevertheless, these are inciuded in Table 7 for

reference.

Natural gas and oil-fired storage tanks are generally insulated at the sides and the top (except for
the flue exit). The burner is located at the bottom of the tank. Heat is transferred to the water from
the bottom of the tank and also from the flues that run up through the middle of the tank. Natural
gas self-heating storage tanks are categorized in this report by three efficiency levels. Level 1 is the
baseline where the modeis sold prior to 1994 are covered. Level 2 is for equipment equipped with
spark ignition, active flue damper, and more insulation. Spark ignition eliminates an energy-
consuming standing pilot. Active flue dampers minimize off-cycle energy losses by reducing the
convection losses through the flue during unused periods. Level 3 includes a condensing
combustion system where the heat rejection by the flue gases is reduced by recovering latent heat
of vaporization. Fuel-oil self-heating storage tanks available on the market since 1994 are

standard-efficiency models that include insulation.

Sizes for self-heating storage type water heaters are specified by the tank volume and the fuel input
rate. To a certain extent, these attributes can be specified independently from one another
depending on the nature of the hot water demand in the building. Vendors provide a wide range of
choices for the combinations of volume and fuel input rate.
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Annual efficiencies presented in Table 7 account for both the recovery efficiency, which is the
cfficiency of conversion from fuel to heat energy and the standby losses from the tank. Therefore,
given the annual hot water load, these figures can be used to convert heat load to site (final)
energy. Recovery efficiencies are also presented. Costs are naturally a function of the tank
size and the heat input rate. The incremental costs for conservation measures are also presented in
Table 7. The Service life of a commercial storage-type water heater is about 15 years. In Table
7, Saturation indicates the share of the total area served by self-heating storage-type water heaters
that 1s served by the particular option represented in that row.

In this report, the category of "Self-Heating Storage Tanks" includes the tanks that have separate
but dedicated heaters.

Tanks Heated by Space-Heating Equipment

Boilers that are mainly for space heating are often used to heat the water heating storage tank
through a heat exchanger inserted in the storage tank. The high temperature boiler water (typically
180°F) warms up the water in the storage tank. During the space heating season, this system is
quite effective. However, during cooling seasons, the boiler that is designed for the high
combined load of space heating and water heating has to be run only for the water heating end use
and this can bring the seasonal efficiency of this type of equipment down to about 30%. Table 8
presents the sizes, efficiencies, costs, service lives, and saturations for tanks heated by space-
heating boilers. Size in this table is the heat exchange rate as opposed to the fuel input rate.
Annual efficiency includes the conversion efficiency from fuel to heat (the efficiency of the
boiler). Recovery efficiencies are also presented. Costs account for only the heat exchangers
and tanks, and do not include the boiler. Service lives for such equipment are around 20 years.
Saturations are percentages of total floor area served by tanks heated by space-heating boilers
that are served by the particular option represented in that row.

Tankless Coil Water Heaters

Tankless coil water heaters are quite similar to the previous category (tanks heated by space-
heating equipment). In this case, there is no storage and the system resembles an instantaneous
water heater requiring the operation of the space heating boiler any time there is a demand for hot
water. This type of operation can be quite inefficient, especially during the cooling season. As can
be seen from Table 9, this class of equipment is generally less efficient than similar equipment with
storage. The efficiency for this tankless class of equipment can be improved by the use of a shell-
and-tube-type heat exchanger. The thermal capacity of the high-temperature boiler water in the
shell reduces the need to fire the boiler at each hot water draw. Size in this table is the heat
exchange rate as opposed to the fuel input rate. Annual efficiency includes the conversion
efficiency from fuel to heat (the efficiency of the boiler). Recovery efficiency covers the
steady-state efficiency for the boiler. Costs account for only the heat exchangers and tanks, and
do not include the boiler. Service lives for such equipment are around 20 years. Saturations
are percentages of the total floor area served by tankless coil water heaters heated by space-heating
boilers that are served by the particular option represented in that row.

Residential-Type Storage Systems

Residential water heaters are not the main subject of this report. However, due to the wide-spread
use of such equipment in the commercial sector, they are included in the data set. This section
covers the electric, gas, and oil-fired residential-type storage systems. For each case, several
design options are presented. These options include varying combinations of insulation, heat
traps, and flue dampers. The attributes of residential water heaters are presented in Table 10. The
data in this table is drawn from DOE [10] and Hwang et al. [11].
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Conventional electric storage water heaters have resistance heating elements inserted in the tank,

which makes the conversion from electricity to heat very efficient. Also, since the entire tank is

insulated, standby losses are very low. Electric water heaters are usually larger in size than gas/oil-

fired storage water heaters since the rate of recovery is lower. The design options for the electric

storage water heaters are: (1) models with reduced heat leaks (jacket to feed-through thermal-
bridges eliminated, voids and imperfections in the insulation eliminated, pressure valve insulated,

plastic drain pipes); (2} models with heat traps (small anti-convection devices put on the inlet and

outlet connections to the water heater); and (3) additional insulation.

Two other design options in the electrical storage category are related to heat pumps. These are (1)
add-on heat pumps and (2) integrated heat pumps. In the former, a separate heat pump is attached
to an existing water heater. The latter is a factory-built heat-pump water heater. As would be
expected, heat-pump water heaters are two to three times more efficient than resistance water

heaters.

Gas and oil water heaters usually have the burner under the tank. The flue extends up through the
middle of the tank. Recovery efficiencies are low and standby losses are high with this equipment.
The design options covered for gas/oil storage water heaters are (1) heat traps, (2) reduced heat
leaks; (3) insulation; (4) flue dampers; (5) multiple flues; and (6) models that condense flue gases.
Oil-fired water heaters differ from gas-fired water heaters in some ways. First, the burner is
equipped with an oil pump and a blower that mixes oil with air for combustion. Second, oil-fired
burners are of larger capacity; therefore, the storage tank volumes are often smaller.

Annual efficiencies presented in Table 10 cover both the recovery efficiency, which is the
efficiency of conversion from fuel to heat energy, and also the standby losses from the tank.
Therefore, given the annual hot water load, these figures can be used to convert heat load to site
energy. Recovery efficiencies are also presented. Costs are for the complete design option
as opposed to incremental costs over the base case cost. Service lives of commercial storage
type water heaters may range from five to 30 years. A uniform distribution over this range can be
used. Saturations presented in Table 10 are percents of the total area served by residential
storage water heaters that are served by the particular option represented in that row.

Point-of-Use Water Heaters

Point-of-use water heaters generally do not have any storage capacity. The water is heated when it
is being drawn through the heater. Since there are no standby losses, annual efficiencies are quite
high. The drawback of these systems is the large input capacity required to meet peak load. Table
11 presents the sizes, efficiencies, costs, service life, and saturations for this class of water

heaters.
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6. HOW TO UTILIZE AND EXPAND PLANT EFFICIENCY DATA IN THE
FUTURE

In this report, annual plant efficiencies bridge the gap between hot water demand and the energy
used for generating hot water. Nevertheless, recovery efficiencies are also supplied because
efficiency technologies may affect either the standby losses or the recovery efficiency separately.
In such cases, one can use the data on recovery efficiency and Equations 1 and 2 below to calculate
the impact of an improvement in standby loss or recovery efficiency on annual efficiency
(sometimes defined as the energy factor). These relationships are also presented in Koomey et al.

[12].
Energy Factor = Energy content of hot water delivered

Total energy used to heat the water (1)

The total energy used to heat the water is defined as:

Total Energy = [Energy content of hot water delivered + Standby losses]

Recovery efficiency (2)

7. COMPARING TOTAL WATER USE AND HOT WATER USE IN THE
COMMERCIAL SECTOR

From the data developed in Table 2, it is possible to estimate the annual hot water consumption in
the commercial sector. Table 12 presents the hot water use in gallons for the major building
types. The annual hot water use for the commercial sector is about 0.67 trillion gallons. The total
water use for the commercial sector is estimated to be about 3 trillion gallons in U.S. Department
of the Interior (1993). Thus, about 22% of the water used in the commercial sector is heated.

8. CONCLUSIONS

Because energy consumption is increasing so rapidly in the commercial sector, it is important for
energy analysts to have access to commercial energy end-use forecasting models that disaggregate
energy consumption not only by fuel type, end use, and building type, but also by specific
technology. In this report, we describe our development and refinement of a base-year data set
characterizing water heating technologies in commercial buildings.! This data set will be useful to
forecasters and policy analysts for evaluating commercial-sector policies and programs that target
water-heating technologies.

The data presented in this report will be refined and improved as more commercial-sector data
become available. Although there is little data now available regarding the market shares of
specific technologies, we expect future commercial-sector surveys to respond to this lack by
including questions that will allow the better characterization of the commercial sector.

I In addition to developing a data set for water heating technologies, we have developed data sets characterizing
lighting, refrigeration, office equipment, and space conditioning technologies. These characterization studies are
published as LBNL reports [15, 16, 17, 18].

19



'$5531109 UT $OLIOHWIOP SPA[OUT 10U §30(] ()

"EJE I00{] [BIDIUILOD 2[0UM I} $I3A0D [R10 L, {¢1] JoUNUT a3 jo yuownedsc] g :920n0¢ (¢)
Tr] w9 uo paseq are sad 41 uesneisar pue Suipjing peuoneanpe ‘SurSpoj ugim suoIsIalCY [¢1] vIg uo paseg ()

T 9Iqe ], woly penofed (1)

£T6'L70°C £67'0L9 0LTY TVLOL
965'T So8'¥1 SLI IETTTS)
oe'sl LILT [AZA0 9101
81T 6171 viT'9t 2104
658'997 0Er'z 93Z°5TI JI[EoH
$9L'81 ELY'C 6Pt () 2831100/[00Y2S YSTHMIBIH "If
180'¢ 969'C Cri‘l {ooysg Arejuswsyg
£LTT 08%'6 0ve ESUEITEICI
629 018 LLL £19001D)
$ET6 0§9°C1 0gL IEE
SITLLI 565 Ov8'L6T 189y UmoQg-Ns
6LT°611 $65 69%'00T 183y pooy 1584
996°¢ 0860 89¢ 2343 981
§L8'T 090°¢ 89¢ O WS
{(suo]fes uolqiw) (suc([es uolfrw) @ (1) 7300071 23d
(€) xorep I9EMm 10H (21 vorur) Jorem 10H jo 2dA L, Suipning
JO suofen) enuuy JO suoj[en [enuuy eIy I00[] SUO[[es) [enuuy

0661 “10129G [BIOISUIWOL) Y} UL 3S(] I3JBAA-1OH PUE JOJBAA [BAUUY 7] I[QEL

20



9. REFERENCES

[1] Electric Power Research Institute (EPRI). 1988. TAG Technical Assessment Guide. Volume
2: Electricity End Use. Part 2: Commercial Electricity Use--1988. Electric Power Research
Institute, Palo Alto, CA.

(2] American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE)
1995. ASHRAE Handbook. 1995 HVAC Applications. ASHRAE, Inc., Atlanta, GA.

(3] Sezgen, O., E.M. Franconi, J.G. Koomey, S.E. Greenberg, A. Afzal, and L. Shown. 1995.
Technology Data Characterizing Space Conditioning in Commercial Buildings: Application to
End-Use Forecasting with COMMEND 4.0. LBL-37065. Lawrence Berkeley National
Laboratory, Berkeley, CA.

{4] Energy Information Administration (EIA). 1991. Commercial Buildings Energy Consumption
Survey: Commercial Buildings Characteristics 1989. DOE/EIA-0246(89). U.S. Department of

Energy, Washington, D.C.

[5] American Soctety of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE.)
1990. Comparison of Collected and Compiled Existing Data on Service Hot Water Use Patterns in
Residential and Commercial Establishments. Phase 1 Final Report, Research Project No. 600-RP,
Technical Committee 6.6 for Service Water Heating. ASHRAE, Inc., Atlanta, Georgia.

[6] Energy Information Administration (EIA). 1994. Commercial Buildings Energy Consumption
Survey: Commercial Buildings Characteristics 1992, DOE/EIA-0246(92). U.S. Department of

Energy, Washington, D.C.

[7] Electric Power Research Institute (EPRI). 1990. Commercial Heat Pump Water Heaters.
Applications Handbook. EPRI, Palo Alto, CA.

[8] Electric Power Research Institute (EPRI). 1992. TAG Technical Assessment Guide. Volume
2: Electricity End Use. Part 2: Commercial Electricity Use. Electric Power Research Institute,

Palo Alio, CA.

[9] Arthur D. Little, Inc. 1993 Characterization of Commercial Building Appliances. Building
Equipment Division, Office of Building Technologies, U.S. Department of Energy, Washington,

[10] U.S. Department of Energy (DOE). 1993. Technical Support Document: Energy Efficiency
Standards for Consumer Products: Room Air Conditioners, Water Heaters, Direct Heating
Equipment, Mobile Home Furnaces, Kitchen Ranges and Ovens, Pool Heaters, Fluorescent Lamp
Ballasts and Television Sets. Volume 3. DOE/EE-0009 Vol.3 of 3. U.S. DOE, Washington,

D.C.

(11] Hwang, R.J., F.X. Johnson, R.E. Brown, J.W. Hanford, and J.G. Koomey. 1994,
Residential Appliance Data, Assumptions and Methodology for End-Use Forecasting with EPRI-
REEPS 2.1. LBL-34046. Lawrence Berkeley National Laboratory, Berkeley, CA.

[12] Koomey, Jonathan G., Camilla Dunham, and James D. Lutz. 1994. The Effect of Efficiency
Standards on Water Use and Water Heating Energy Use in the U.S.: A Detailed End-use
Treatment. LBL-35475. Lawrence Berkeley National Laboratory Report, Berkeley, CA. May.
(A shortened version of this report was published in Energy-The International Journal 20 (7), pp.

627-635, July 1995)

21



[13] Energy Information Administration (EIA). 1995. Annual Energy Outlook 1995. DOE/EIA-
0383(95). U.S. Department of Energy, Washington, D.C.

(14] U.S. Department of the Interior. 1993. Estimated Use of Water in The United States in
1990. U.S. Geological Survey Circular 1081. U.S. Department of the Interior, Washington,

D.C.

[15] Koomey, Jonathan G., Mary Ann Piette, Mike Cramer, and Joe Eto. 1995. Efficiency
Improvements in U.S. Office Equipment: FExpected Policy Impacts and Uncertainties. LBL-
37383. Lawrence Berkeley National Laboratory, Berkeley, CA. December.

[16] Sezgen, A. Osman, Y. Joe Huang, Barbara A. Atkinson, and Jonathan G. Koomey. 1994.
Technology Data Characterizing Lighting in Commercial Buildings: Application to End-Use
Forecasting with COMMEND 4.0. LBL-34243. Lawrence Berkeley National Laboratory,

Berkeley, CA. May.

[17] Sezgen, Osman, and Jonathan G. Koomey. 1995. Technology Data Characterizing
Refrigeration in Commercial Buildings: Application to End-Use Forecasting with COMMEND
4.0. Lawrence Berkeley National Laboratory, Berkeley, CA. LBL-37397. December.

[18] Sezgen, Osman, Ellen M. Franconi, Jonathan G. Koomey, Steve E. Greenberg, Asim Afzal,
and Leslie Shown. 1995. Technology Data Characterizing Space Conditioning in Commercial
Buildings: Application to End-Use Forecasting with COMMEND 4.0. LBL-37065. Lawrence

Berkeley National Laboratory, Berkeley, CA. December.

[19] EPAct. 1992. Energy Policy Act of 1992. U.S. House of Representatives. Conference
Report 102-1018 to accompany H.R. 776. U.S. Government Printing Office, Washington, D.C.

October.

22



