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Floor Space and Energy Use

Floor area Number of Floor space Energy use
(f12) Buildings (%) (%) (%)

Less than 10,000 /73 20

10,000 - 100,000 25 45
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Why Advanced Control?

Significant improvements already achieved

Envelope — reduced heat gains and losses
High-efficiency motors for pumps and fans

Chillers and boilers drastically improved in last 20a

Yet, remaining needs in

Thermal energy distribution, storage, control
System integration

Energy efficiency and peak reduction potential



Opportunities for Optimization

Optimal Operation

Quasi-Stationary Perspective

v

GSO: Global Setpoint
Optimization

Dynamic Perspective

vV

MBC: Model-Based
Predictive Control

RLC: Model-Free
Learning Control

HLC: Hybrid Model-Based
Learning Control

Physical Models
(Forward Models)

Statistical Models
(Inverse Models)




Model Predictive Control

Optimal Operation

Quasi-Stationary Perspective
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Why Model Predictive Control?

Several HVAC system components — longer-term
optimal control solution often not trivial.

Temporal variations in comfort requirements and /or

energy costs introduce additional complexity.

Predictive control opens up the possibilities

to exploit the building’s thermal mass

to use information on future disturbances (weather, internal
gains) for better planning.

to integrate DG and distributed storage systems




Commercial Building Status Quo

No use of weather, prices, or carbon forecasts

No accounting for building dynamics and thermal

inertia of commercial buildings

No aggregation of similar buildings to provide

concerted demand response or load leveling effect

No use of short-term curtailment opportunities, very
inelastic demand side response.




©)

“Elastic” Commercial Buildings®,
7

@

f
Building /grid integration: Integrate commercial &&
building operations with electric system markets

Price responsive thermal mass control

Enable short-term (<1h) response to dynamic
electric market prices for ancillary services.

Aggregate and optimize portfolios of large
buildings into large responsive loads

Alternative utility scale storage for renewables
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PJM Chicago August 2008
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PJM NYC June 2008
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MPC as Cloud-Based SaaS

- Retwrns Demand Response
”III - Partopation, Losd Dats
Llectricity Trader
Price Forecast
Pricing Dats "

T

Portfolio Application

« Storage %or Renewables
o Grid Ancllary Services
o Utikty TAD Deforral
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Case Study in Chicago
S

—0/23/2020 OPT ——9/23/2010 NSU  «=w/23/2010 Actual
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Half-Hour Ending

Customer’s energy use reduced by 1% On-peak energy reduced by 24%
Supplier’s energy cost reduced by 18% Peak demand reduced by 25%



Mapping building to grid dynamics

Optimal - F  Objective, Price,r, Weather,, Chiller Curves, DCV, ...

Strategy

Objective: YExpense OEfficiency OPeak Demand OChiller Starts O All

Feedback
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: Weather forecast : ‘ ' ‘ :Operatmg schedules :

: . MODEL L .

1 Zone temp : ‘ HVAC System _ ‘  Optimal temperatures :
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, Outside temp 1 ‘ Operating Protocols ‘  Performance forecast 1

' | ' Construction | ;
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DR becomes large contributor to overall building expense reduction,
especially in large grid-congested cities.



Texas August 2011
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Comparison with Heuristic
I

Relative Savings between a Heuristic (4AM) and Optimal Precooling Strategy under
varying Price Structures
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MPC Challenges %

Model Creation & Calibration %
EEFG /OpenStudio
Fractional Factorial Analysis
Auto-Calibration
Bayesian Parameter Estimation and Model Competition
Thermal History
Establishing State: Pre-Conditioning Horizon
EnergyPlus Modifications
Simulation Speed: Reduced Order Modeling

Model Mismatch: Feedback & History Management



Implementation

Embed in existing automation systems

HIGH-LEVEL CONTROL

— predictive confrol  (optimization ) Automation level
PREDICTIVEHIGH -LEVEL CONTROL model-based control

non-critical control

l v i LOW-LEVEL CONTROL

N SUBLEVEL | SUB-LEVEL - SUBLEVEL | oconwentionaldosed -loop control Field level
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[ | I | critical control
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Market Opportunity 9

Saving potential: 7
10-25% of HVAC costs, i.e., 0.15-0.40 $/ft2/yr .
Example: 1 MSF building — 150-400 k$ per year

Not capital intensive, but engineering skill needed
Short payback periods (<1 year)

Improves economics of classical energy retrofits

Time?



Benefits to Customer

Lower peak charges — energy cost reductions
Increase demand response revenue

Maintain thermal comfort, meeting ASHRAE thermal
comfort standards

Improve energy efficiency

Improve central plant operations



Site Requirements

DDC to control local zone air temperature setpoints
... on at least 20% of the floors.

Unoccupied hours, with temperature flexibility.

Central chiller system — for both individual building
and campus applications.

Variable Air Volume (VAV) system



THANK YOU FOR YOUR ATTENTION!




