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Introduction evaluator confidence in estimates of program cost-
effectiveness, and cvaluation bias can tesult in non-cost-
eflfective programs being mislabeled as cost-effective. We
assess the uncertainty in estimates of DSM program cost-
effectivencss for evaluation methods of varying precision.and
accuracy. By first cxamining the effects of imprecision and
bias, we can then assess the impact of evaluation method

Past discussions of DSM program cvaluation have
suggested that the appropriate level of evaluaiion is
dependent on the cost and performance of each evaluation
technigue, and the value of the resulting information to the
evaluator, regulator, or program planner (Refs. 1 and 7). We
agree, and present this case study exploring the appropriale ehoice on our confidence in the cost-cffectiveness of a
level of evaluation for a particular objective. Qur recent LBIL program. The results of these calculations enable us to
report has described a procedure for characterizing the discuss the appropriate levels of DSM program cvaluation
uncertaintics in different evaluation methods, and for relating with the objective of confidently assessing cost-effectiveness.
the uncertainty of cach method to the uncertainty of We begin with a discussion of key terms and a
evaluation results, such as annual program savings, the cost description of a [ramework for determining the appropriate
of conserved encray, and program cost-cffectiveness (Ref. 3). tevel of evaluation. We then discuss the range of cost-
In this paper, we report on one aspect of this work, relating offectivencss cstimates observed in recent commercial
the precision and bias of evaluation methods to estimates of lighting rebate programs. Based on this range of cost-
a program’s cost-effectiveness. effectiveness estimates we assess the effects of imprecision

Estimates of the cost-effectivencss of DSM are hased and bias on evaluator confidence in program cost-
on evaluations of program impacts. The evaluation methods effectivencss, and discuss the implications of these findings
used are, o an extent not welt understood, subject 1o errors of for future evaluations.
imprecision and bias. Evaluation imprecision can reduce
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Figure 1. Bias and Precision in Savings Eslimates
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Uncertainty in Evaluation;
Defining Precision and Bias

We use two different metrics to assess how well
evaluation methads reveal a program’s actual encrgy savings
(and resulting cost of conserved energy and cost-
effectiveness): bias (also known as accuracy) and precision.
A biased estimate systematically deviates from the true valu,
under or over estimating savings. For example, if a method
consistently under estimated actual savings by 20%, that
method would be considered biased.

The issue of precision is more esoteric. Many program
evaluations omit all discussion of estimate precision, and
report savings estimates as single values, But because of the
difficulties associated with calculating program savings, any
estimate of program savings is subject to some uncertainty.
It is this uncertainty that is measured by an expression of
precision. An estimate which omits an estimate of precision
is incomplete and can be misleading. For example, an
estimate of annual savings of 5,000 kilowatt-hours (kWh)
with a standard deviation of +/- 300 kWh is very different
from an estimate of 5,000 +/- 3,000 kWh. The latter estimate
is of less use as a gauge of program savings, because it
suggests that the actual savings could be considerably above
or below the mean estimate of 5,000 kWh, while the former
estimate is more precise, satisfying what is known as a 90/10
criterion; +/-10% relative precision at a 90% confidence
interval. Thus, figures reported without an estimate of this
uncertainty are not as informative as those which include it.

It is important to consider the relative importance of
precision and accuracy. A precise but biased estimate is
worth little, unless the magnitude of the bias is known. On
the other hand, an unbiased but imprecise estimate can still be
uscful because, on average, it provides the correct value.
Figure 1 illustrates the relationship between bias and
precision.

Biased, i.e., under- or over-estimates of savings, have
important implications on several levels: For the utility,
biased estimates of savings misinform about program cost-
effectiveness. Biased over-estimates of savings may cause
utilities to retain DSM programs which are not, in reality,
cost-effective. At the state regulatory level, overestimates of
savings will resull in utility overcompensation for lost
revenues (for lost revenues which, in fact, were never lost)
and payment of excessive shared savings incentives. Thus,
the utility is allowed to collect additional, unjustified revenue
from ratepayers. At the national level, plans to reduce
national dependence on fossil fucls or reduce power plant
cmissions using DSM activities may fall short of desired
goals if plans are based on studies which exaggerate actual
savings,

An imprecise cstimate of savings has some slightly
different implications: Imprecision in annual savings or
measure lifetimes can affect the mean cost of conserved
cnergy estimate, and reduce confidence that a marginally

cosi-effective program is really cost-effective. Most of the
regulatory concern regarding  precision  suggests  a
fundamental desire for a precise estimate, but this desire is
not necessarily based in the requirements of any particular
use of the evaluation results. In many cases the 90/10 criteria
is applied to estimates of annual savings, without a similarly
rigorous criteria being required for lifetime savings or for the
resulting estimates of the cost of conserved energy. Vine and
Kushler, in a paper found in these proceedings, discuss the
history of regulatory mandates for evaluation precision (Ref.
4). In this paper, we suggest that a precision criteria of 90/10
is usually unecessary for confidently verifying cost-
effectiveness. Bias in evaluation results, depending on the
evaluation methods used, appears to be a greater threat to
accurate cost-effectiveness calculations.

Assessing Cost-Effectiveness

The cost-effectiveness of utility DSM programs is
gauged by comparing a program’s cost of conserved cenergy,
the levelized cost of the program over the installed
equipment’s anticipated lifetime, to the sponsoring utilities’
avoided costs.® A program that provides kWh savings at a
levelized cost equal to or less than the levelized avoided costs
is considered cost-effective, and has a total resource cost
(TRC} test ratio greater than one (Ref. 5).

Even if an estimate of savings results in a TRC test
ratio greater than one, the evaluator cannot rule out the
possibility of the program not being cost-effective without
some estimate of the savings, cost, and avoided cost estimate
precision. Due to the nature of the cost of conserved energy
calculation, a more imprecise savings estimate increases the
probability that a program’s cost of conserved energy is
larger than anticipated, which can shift the mean TRC test
ratio to less than one. Under certain circumstances, an
imprecise estimate of savings can dramatically reduce
confidence in program cost-effectiveness,

While an imprecise estimate of savings can reduce
confidence in a program’s cost-effectivencss, a biased
estimalc of savings can misrepresent a non-cost-effective
program as cost-cflective. Because assessment of bias
requires an independent estimate of the ‘true’ savings for
comparison, our characterization of bias is understandably
less complete, but not necessarily less important, than our
characterization of savings cstimate imprecision.

Avoided costs are also levelized over the life of the
efficiency measures using a discount rate cquivalent to the
utilitics’ cost of capital.
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Table 1. Total Resource Costs and Avoided Costs from
20 Commercial Lighting Programs (Eto ef al. 1994)

Sponsoring Utility Annual Program

Cost of Conscrved Energy

Avoided Costs Total Resource

Savings (GWh) {¢/kilowatt-hour) (¢/kWh) Cost Test Ratio
BPA 2.4 4.5¢ 4.7¢ 1.0
BHEC 2.1 4.7¢ 5.0¢ 1.1
IE 1.1 4.4¢ 4.8¢ 1.1
NMPC 101.4 6.0¢ 9.0¢ 1.5
BECo 8.3 7.2¢ 11.2¢ 1.6
GMP - Small /1 3.0 1.0¢ 12.1¢ 1.6
PG&E 115.7 5.0¢ 8.5¢ 1.7
SDG&E 2.0 4.1¢ 7.2¢ 1.7
SMUD 437 6.5¢ 11.2¢ 1.7
CHG&E 16.1 3.7¢ 6.8¢ 1.9
GMP - Large C/f 16.3 6.3¢ 12.1¢ 1.9
SCL (Pilot) 1.1 2.5¢ 4.7¢ ;.9
Con Edison 91.9 6.3¢ 14.0¢ 2.1
NEES - Small C/1 23.5 5.2¢ 10.8¢ 2.1
CMP 15.7 1.8¢ 4.6¢ 2.5
NEES - EI 104.3 3.7¢ 10.0¢ 2.7
NU - ESLR 149.8 2.5¢ 8.1¢ 3.2
NYSEG 53.9 2.3¢ 10.0¢ 473
SCE 72.8 1.2¢ 7.2¢ 5.8
PEPCO 40.5 1.2¢ 1.5¢ 6.4

The Cost-Effectiveness
of Commercial Lighting DSM

The recent DEEP Commercial Lighting Report
estimated the cost of conserved energy and reported utility-
estimated avoided costs for 20 commercial lighting programs
(Ref, 6). Examining the ratios between the estimates of
avoided costs and total resource costs for these 20 programs
provides some insight regarding the distribution of typical
cost-effectiveness estimates. Table 1 lists the utility
estimated avoided costs, the cost of conserved cnergy, and
the TRC test ratio for the 20 commercial-sector lighting
programs examined tn the DEEP report.

When point estiinates of the cost of conserved energy
were compared to cach utilities’ estimate of their avoided
costs, ajl of the programs examined in the DEEF report were
cost-cllective, i.e., had TRC test ratios greater than or equal
to one. A few (15%, but only 1% by energy savings) were
only marginally cost-effective, with ratios less than 1.5. The
majority (55%, 50% by encrgy savings) had cost-
cflectiveness ratios ranging from 1.5 to 2.1. A final group
(30%, 50% by cnergy savings) had cost-cflectiveness ratios
ranging from 2.5 to 6.4. These three groups form the basis
for our paramcterization of cost-effectiveness estimates. We

can simulate three programs with mean cost-effectivencss
equal to the mean from cach of the three groups.” We can

b
Avoided cost calculation is a complicated matter. A

complete accounting tnvolves estimation of a utilities’ fixed
and variable costs per kWh and per kW supplied. These
costs will vary over lhe lile of program mecasures, and a
thorough understanding of the utilities’ resource acquisition
plans is required to estimate future changes in avoided kWh
and kW costs. Finally, DSM program characteristics also
affect the calculation of pertinent avoided costs: A program
that saves energy on-peak will have a larger avoided kW cost
component than a program that only saves energy during off-
peak hours.

With this in mind, it is clear that avoided cost
estimation is itself subject to considerable uncertainty. Whiie
we recognize the importance of correct avoided costs
calculation, an in-depth discussion of thc uncertainties
associated with avoided cost cstimation, or of the utility and
customer-borne cost clements in the cost of conserved
encrgy, is beyond the scope of this paper.
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Table 2. Parameterization of TRC Test Ratios
Precision of Bottom-Up and Top-Down Evaluation Methods

Range Mean Total Resource Cost Range of TRC % of the 20 DEEP Samplc % of Annual Savings
Test Ratio Test Ratios Programs in Range in Range

Low 1.1 1.O- 1.1 15% 1%

Medium 18 1.5-2.1 55% 50%

High 4.2 25-64 30% 49%

Table 3. Parameterizations of Annual Savings Estimate Precision

Precision Precision from Econemetric Precision from Analysis of End-
Analysis with Simulated Data Use Metering Data

Low 15% 50%

Medium 10% 25%

High 3% 10%

then estimate the effects of an imprecise estimate of savings
on the cost-effectiveness estimate for each program. Table 2
SUMMArizes our parameterization of cost-cffectiveness
cstimates,

This section summarizes estimates of evaluation
precision from our analyses of both top-down (econometric
methods based on whole-premise billing data) and bottom-up
{meciering methods utilizing information on specific
cquipment installed) estimates. Myriad factors can affect the
precision of both methods, and the estimates of precision
given here are based on limited program data and a subset of
all available evaluation methods. Thus, these estimates of
precision do not universally apply to cvery econometric or
nelering study onc could conduct, but rather provide a rough
estimate of the range of precisions onc could cxpect using a
varicty of methods.

It ts also important to note that estimates of precision
oblained with different evaluation methods are not strictly
comparable. A value's precision is entirely dependent on the
tmplicit assumptions that govern which aspects of a quantity arc
thought 1o be imprecise. The precision of an end-use metering-
derived savings estimate is typically based on information on the
sample size and sample homogeneity when compared to the
participant population. The precision of an econometrically
derived savings estimate is based on the capacily of the
ceonometric model to systematically explain variability in the
participant billing data. The statistical assumptions inherent in
multivariate regression {c.g., normality and independence) also
tmplicitly affect the calculation of estimate precision,

In order to create these rough estimates of the
precision (and rough estimates of bias, which we discuss later
in the paper) associated with different evaluation methods for
commercial lighting programs, we have, in a separate report,
performed a number of detailed analyses based on both actual
program and simulated program data (Ref, 3). To estimate
the bias and precision of end-use metering methods, we
compared resulls from a handful of short and long-term
metering studies, investigating hours of operation, sample
size and selection, and interaction cffects between heating
cooling, and lighting equipment. To investigate the bias and
precision of econoinetric methods we used the building
energy modeling program DOE2 10 simulate a set of
participant and nonparticipant buildings’ monthly enerey
consumption, and estimated econometric models using the
results.

Table 3 presents the range of relative precisions {at the
90% confidence level) we obtained in the aforcmentioned
analyses. To represent a diversity of evaluation methods, we
parameterize the precision of these evaluation methods with
low, medium, and high precision estimates. One should not
deduce from Table 3 that econometric methods are inherently
superior to metering methods. Qur method of obtaining
estimates  of econometiic precision used simulated
consumption data which probably understated the variability
i an actual set of monthly billing data. As mentioned earlicr,
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Figure 2. Distributions of the Total Resource Cost Test Ratio for Medium Precision Metering

estimates of precision from different methods are based on
different statistical assumptions, and are therefore not strictly
comparable. Finally, end-use metering provides a wealth of
additional evaluation information above and beyond simple
estimates of annual program savings.

The Effect of Imprecision on
Cost-effectiveness Estimates

In this section, we use the previous sections’
infarmation on the imprecision of evaluation method results
and the parameterization of cost-effectivencss to estimate the
effects of imprecision on confidence in program cosi-
eflectivencss estimates. We utilize a Monte Carto model to
propagaic uncertainties because the method and results arc
casily grasped without a detailed understanding of caleulus or
other analytic propagation of error techniques, and because
Monte Carlo techniques allow more frecdom in specification
of uncertain quantities and functional relationships.

Additional uncertainty s incorporated into the cost-
elfectiveness calculation with the incorporation of an
uncertain measure lifetime estimate, based on inventories of
clficient equipment installed in lighting programs in the
Pacific Northwest (Ref. 7). Most regulators focus on the
precision of annual savings. By incorporating an uncertain
c_slimmc of measure lifetime, we can estimate the precision ol
lifetime savings and program cost-cflectiveness.

Monte Carlo Model Results

Three examples of the resulling distributions of the
TRC test ratio from the Monte Carlo model are given in
Figure 2.° The distributions displayed reflect annual savings
estimates of average precision obtained through end-use
metering. Each of the threc distributions represents a
different mean estimate of the TRC test ratio, representing the
three parameterizations described in Table 2.

‘The distributions with some portion of their area to the
left of 1.0 represent programs which, given the precision of
the evaluation methods used, could be non-cost-effective
cven though the mean estirate, which might be submitted
alone as an estimate of cost-cffectiveness in a regulatory
hearing, is greater than 1.0.

Table 4 lists the fraction of cach distribution that lics
below 1.0, indicating the likelihood of non-cost-e{fectiveness.
Only the distributions for programs with low mean total
resource costs have a significant postion of their area below
1.0. Thus, the risk of mistakenly labeling a program cost-
effective when it actually is not is highest for programs whose
mean estimates of the TRC test ratio are close to 1.0. This

<

The Monte Carlo madel sampled 1000 points from
cach distribution, obtained using median hypereube sampling.

1995 Energy Program Cvaluation Conference, Chicago
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Table 4. Fraction ol Distributions Repres

enting Non-Cost-Elfective Programs

Mean  TRC | Savings Estimation Method Precision Percent of Distribution
Test Ratio ‘ Less Than 1.0
Low End-Use Metering Low {£50%) 40%
(1.1) Medium (£25%) 29%
High {x£10%) 11%
Econometric Low (x£15%) 19%
Medium (x10%) 11%
High (£5%) 3%
Medium End-Use Metering Low T%
(1.8) Medium —
High —
Econometric Low —
Medium —
High —
High End-Use Metering Low 1%
4.2 Medium —_
High —
Econometric Low —
Medium ——
High —

result is intuitive: imprecise measurement which results in a
ratio ¢lose to one has a greater chance of actually being
below one than a simtlarly imprecise measurement which
results in a ratio much larger than one.

Implications of Estimate Imprecision

The Monte Carlo results summarized in Table 4 have
important implications for the level of precision required to
confidently assess DSM program cost-cffectiveness. The
answer to the question, “Is a 90/10 criterion necessary to
confidently assess the costeffectivencss of a DSM program?”
15 “No™. Only for programs with mcan TRC test ratios naar
1.0 is a level of precision approaching 90/10 nccessary to
confidentty determine whether the program is truly cost-
effective.  BEven for the lowest precision evaluation, a
program with a ‘medium’ mean TRC test ratio is cosl-
effective at the 90% confidence level.

Should these results change the way in which
evaluations are conducted? We sec two ways 10 proceed
from this analysis: In the distribution of TRC test ratios from
the DEEP smnple of 20 commercial lighting programs, we
observe that the majority of programs fall into the ‘medium’
catcgory. Thus, in the majority of cases, a 90710 criterion
would be cxcessive for the determination of cost-
cffectiveness, It follows that a less stringenl precision
requirement should be adopted.

Alternatively, program planners and evaluators may
TRC test ratio

have some previous estimate of thc mean

assoctaled with the pr
year's ¢valuation, or on progr

ogram, perhaps based on a previous
arn planning estimates. A
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determination of cvaluation requirements could be made
based on this estimate of cost-effectiveness: programs with
preliminary cost-effectiveness ratios ncar 1.0 would be
allocated  additional evaluation rcsources o ensure 2
confident asscssment of ex ante cost-effectiveness.

[f cost-cffectiveness verification were the primary goal
of an evaluation, we would advocate a combined approach,
wherchy programs without preliminary or planning estimalcs
of cost-cffectiveness are  allocated cnough cvaluation
resources o assess cost-eflectiveness for a program with @
TRC test ratio in the ‘medium’ range, while programs with
some cost-effectiveness information would be evaluated as
dictated by these ratios,

A fundamental hurdic in this type of cvaluation
planning is cur inability to cstimate the cost of attaining a
given level of cvaluation precision. The programs for which
we have been able to collect detailed cvaluation data in our
research represents oo limited a sample 1o conclusively
characterize  the  program  attributes, participant
characteristics, and evaluation method uncertaintics requircd
(o understand the precision-evaluation tradeoff. Thus, the
most practical and immediately applicable result of owf
analysis here is that a 90/10 criterion for relative precision of

1995 Energy Program Evaluation Conference, Chicagd



Table 5. Sources of Bias in Cost of Conserved Energy Estimates

Parameter Source ol Bias

Magnitude of Bias in the Cost
of Conserved Encrgy

Bottom-Up Savings [stimates

HVAC/Lighting Interactions

Nonrepresentative Metered Sample

Seasonality of Hours of Opcration

556 w0 +5%
+5% to +15%

unknown

Top-Down Savings Estimates
SAE Models

Engineering Estimate Uncertainty in

+5% 1o +50%

Measure Litetiing

Use of Mfr. Estimates

-40% 10 -5%

Free Riders™®

Free Riders Over Time

at least -1 1%

Frce Drivers

Omission of Free Driver Savings

positive, but unknown

*Free riders are relevant only for utility cost test ratios, not TRC test ratios.

annual savings cstimates is almost always excessive for
determining cost-effectivencss.

The Effect of Bias on
Cost-Effectiveness Estimates

Thus far, we have focused on the imporlance of
precision in assessing cost-effectivencss.  However, it 15
crucial, and potentially more important, {0 consider the role
of bias as well. Despite the importance of estiinate accuracy,
our understanding of evaluation bias is less developed than
our characterization of precision duc to the difficulty of
characterizing bias, which requires an independently
estimated, unbiased estimatc for comparison (i.e., the truc,
actual program savings). Our limited sanple of program
cvaluations also hindered a more thorough characterization of

~evaluation method bias.

Just as imprecise savings estimates pose the greatest
threat (o programs with mean cost-cffectiveness near one,
those same programs may actually be non-cost-eflective
programs with biased estimates of savings. Table 3 reviews
the biases identified in our rescarch (Ref. 2). The biases mn
Tuble 5 arc given as percentage deviations from the unbiased
value. A negalive bias means that the cost of conserved
energy is underestimated and a positive bias means that the
cost of conserved cnergy is overcstimated.

The effect of these biases is multiplicative; a cost of
canserved energy estimate based on limited duration metering
and manufacturer estimates of measure lifetimes would be
subject to cumulative biases which could double or halve the
cost of conserved energy. Some utilities implicitly
acknowledge the bias inherent in their cost-effectiveness
L‘x_t';m;ltcs by only implementing and continuing programs
with o TRC test ratio significantly abave 1.0, using, for
esample, a threshold of 2.0 or higher to screen programs.

For TRC test ratios close 10 one, even a bias of a few
pereent could result in a non-cost-effective program being

1995 Enargy Program Evaluation Conference, Chicago

erroneously labcled cost-effective (or vice-versa, labeling @
cost-ellective program as non-cost-effective),  However,
when considering bias and precision together, the effect of
bias is even more pervasive. A negative bias in the cost of
conserved energy means that the distribution of the true TRC
test ratio in Figure 2 is further to the lelt and closer to 1.0
than the supposed distribution. For programs with mean TRC
test ratios close to one, a larger fraction of the distribution
would move below the cost-cffectiveness threshold of 1.0,
revealing an increased probability that the program is not
cost-effective. If these biases arc large enough or several
negative biases arc applicable, even a program with a mean
TRC test ratio in the ‘medium’ range could, in actuality, be
non-cost-effective. For example, a bottom-up metering study
could meter equipment in the winter, overestimating annual
tiours of operation by approximately 5%, and savings could
be coupled with biased manufacturer estitnates of equipment
lifetimes, overestimating lifetimes by as rouch as 40%. In the
worsl case, the combined bias could overestimate lifetime
program savings by 45%, which would cause a marginally
non-cost-elfective program to appear to have a (biased) TRC
test ratio approximately equal to L0

Most of the evaluations for the 20 programs reviewed
in Table 1 are subject to at least one of the biases listed 1n
Table 5: (1) Metering studies that did not adjust for
seasonality or interaction effects; (2) SAE models that used
jmprecisc tracking database cstimates of savings; (3) Measure
lifetime estimates based on manufacturers’ estimates of
equipment operation, and; (4) relevant only for utility cost
test ratio estimation. Free ridership cstimates which only
discuss free riders in the first program year.

Given the potential importance and pervasiveness of
these biases in the current practice of evaluation, it scems
prudent that some evaluation resources should be allocated o
reduce bias, and not only imprecision, in the cost of
conserved energy. In the next section, we discuss the
potential costs of reducing these biases.
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Table 6. Estimates of the Cost of Addressing Biases in Commercial Lighting Evaluation

Source of Bias Method Used to Reduce Bias

Approximate Marginal Cost

Scasonality of Hours of Scasonality Adjustmient Low
Operation Longer Term Mctering Med/High*
HVAC/Lighting Metering of HVAC Equipment High
Interactions Modeling of HV AC/Lighting in Prototypical Low/Med
Buildings
Nonrepresentative Proper Participant Stratification and Selection of Med
Metercd Sample Equipment to Meter Low
Eng.Est. Uncertainty in Switch to non-SAE model Low
SAE Models
Use of Mfr. Estimates of Verify Continued Operation with Site Surveys Med*
Lifetimes

Free Riders Over Time
Life of Program Equipment

Analyze Equipment Sales to Nonparticipants During ~ Med*

Omission of Free Driver
Savings

Customer and Vendor Surveys
Analyze Equipment Sales in Diffusion Framework

Low
Med/High*

* These methods require considerable additional time for the compilation of sufficient data.

Implications of Estimate Bias

The preceding discussion demonstrates  the
significance of evaluation bias when assessing program cost-
effectiveness. How can these biases be handled in the
program evaluation? Ideally, the costs and potential impacts
of each bias would be compared, and resources would be
spent to identify and reduce the largest biases at the least cost.
Because of the variability associated with the impacts of the
biases, it is difficuit to definitively prioritize the biases in
order of their importance so that they can be addressed
cffectively given available resources. A larger sample of
program evaluation data than is presently available is
required to better characterize cach evaluation method’s
biases. To begin to prioritize the treatment of the biases in
evaluation, we present some qualitative cstimates of the
evaluation costs associated with reducing the biases.

Even with only rough guidelines regarding cvaluation
costs, we can draw some conclusions. Many of these biases
can be at least partially addressed with minimal additional
evaluation resources: Metered samples can be adjusted 10
contro) for seasonal effects and carefully stratified based on
equipment, facility, and building zone characteristics; SAE
maodels can be used only when tracking database estimates
are of sufficient precision; and customer and vendor surveys
can be used to obtain first-order estimates of free driver and
spillover effects. Incorporating these changes into evaluation
practice would improve the accuracy of estimates of cost-
effectiveness of lighting programs at minimal additional cost.
[For those evaluation improvements which require substantial
commitments of time and money, a decision analylic
framework, delineated in the next section, could be used to

determine if the preliminary estimate of the TRC test ratio
warranted additional efforts 16 reduce estimate bias.
The generalizability of information regarding these biases
may also represent a justification for additional evaluation:
If information regarding a bias from a particular evaluation
can be used to estimate the magnitude of the same bias for
other programs and evaluations, the cost of the additional
evaluation is effectively spread among multiple programs.
As with estimate imprecision, we find that evaluation
biases threaten the cost-effectiveness of programs with TRC
test ratios closer ta 1.0. Unlike imprecision, however, biases
could threaten claims of cost-effectiveness for programs with
TRC test ratios in the medium range (~1.8) as well. When
imprecision is considered in addition to bias, reduced
statistical confidence in even higher TRC test ratios may
result.

The Value of Correctly
Assessing Cost-Effectiveness

In this paper, we've discussed the role of precision and
bias in asscssing cost-cftectiveness. The next logical step is
to devise a method for the optimal allocation of evaluation
resources. Ultimately, the cost of improving the precision
and accuracy of evaluation method results should be traded-
off against the value of obtaining increasingly accuratc and
precise estimates of program cost-effectiveness. A common
use of cost-effectiveness information is program screening:
ongoing programs are screened to determine 1l they should be
funded for the next program year. In the following
paragraphs, we briefly outline a procedure for wrading off
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cvaluation cost and cvaluation value,  We present this
Jecision analytic approach as an intriguing topic for fuure
research.

A decision analytic approach to determining the
nppropriulc level of additional evaluation to reduce
jmprecision and bias requires: (1) a subjective estimate of the
chances that the program is actually non-cost-cftective given
any initial cvaluation results, and (2) an cstimate of the
resources that would be (potentially) misallocated to the
program in the following year (t.c., next year’s program
budget).” The product of these two values is the expected
value of futurc misallocated resources, and would represent
the maximum marginal evaluation cxpenditure justified il the
resulting evaluation provided an estimate of cost-
effcctivencss with 100% certainty (known as the expected
value of perfect information}. An additional estimate of the
results of future evaluations (i.e., the cerlainty of the
subsequent estimate of cost-clfecliveness) could be used to
refine the justifiable marginal evaluation expenditure. In a
utility portfolio of programs, application of this technique for
each program would result in evaluation expenditures which,
on average, would minimize thc sum of evaluation
expenditures and future misallocated program resources.

Using cost-effectiveness  estimates  for  program
screening and budgeting is just one example of how savings
estimates are used and ecvaluation resources should be
apportioned.  Additional  applications of evaluation
information such as shared savings calculation, lost revenue
recovery hearings, and load forecasting may justify more
accurate and precise evaluation results, and may require a
dilferent selection framework.  For example, when
considering shared savings incentives carned by the utility,
evaluation expenditures may be justifiably apportioned to
programs with high TRC test ratios, because these programs
can potentially provide the utility with the largest monetary

rewardSc‘ as opposed 10 cost-cffecttveness screening, where

programs with fower TRC test ratios would justify increased
evaluation resources. The appropriate Jevel of evaluation
expenditures could be set and justified by considering tbe
value of evaluation using one, several, or all, of these
applications of evaluation results.

A similar method is used to investigate utility
planning uncertainties by Hobbs and Maheshwari (Ref. 8).

¢ High TRC test ratios result in larger incentive
awards with all other things (e.g., program size) being equal.
A scconary effect, where larger programs usually have higher
TRC test ratios and therefore larger shared savings
incentives, also cxists.

Conclusions

In this paper we describe and implement a framework
to assess the effcets of bias and imprecision on estimates of
program cost-eifectiveness. The framework allows program
evalvators and program planners to explicitty handle the
uncertainties inherent in the complex evaluation of a DSM
program. By estimating the effects of these uncertainties on
estimates of program cost-effectiveness, program planners
can ascribe confidence to their results and adopt levels of
cvaluation expenditures which are justificd by the uses of the
evaluation results.

Our implementation of this framework suggests that
imprecision in the cost of conserved energy is significant for
programs with mean TRC test ratios close to one, while
higher ratios guarantee cost-cffectiveness even with
considerable cstimate imprecision. A 90/10 criteria for
precision seems excessive for most programs when screentng
for cost-effectiveness, in light of these findings.

However, bias in savings cstimates can threaten the
confidence of cost-cffectiveness estimates for programs with
ratios approaching 2.0, especiatly when estimate imprecision
is also considered. Much of the contemporary concern with
precision should be redirected to examine bias in evaluation
estimates, given the results we present here.

Savings estimate biases and imprecision stem from a
multiplicity of factors, some of which require expensive
additions to evaluation procedures, and some of which
require only slight changes in evaluation methods. While we
recommend that ali evaluations should include the least-cost
methods to reduce estimate bias, additional expenditures
should be traded off against the value of accurately assessing
cost-effectiveness. The value of other evaluation information
applications, such as demand forecasting and program
improvement, require additional, explicit tradeoffs between
information value and evaluation costs,
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