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Something about myself 

 Born in the tip of the heel of the Italian boot 

 MSc Power Systems, 2002, Politecnico di Torino, Italy 

 Visiting researcher, 2004, Trondheim, Norway 

 PhD in Energy Systems, 2006, Politecnico di Torino, 
Italy 

 Research Fellow, 2006-2007, Politecnico di Torino, 
Italy 

 Post Doc, 2008-2011, Imperial College London, UK 

 Lecturer, 2011 - current, University of Manchester, UK 

 (Power system operation and economics, Smart grids 
and Sustainable electricity systems) 

 2 books, 5 book chapters, >70 papers on 
environomics of energy systems 
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Something about myself /ctd 

 Main expertise and interests: 

– Integrated energy systems (electricity, heat, cooling, 
gas, water, transport, ...) and multi-generation 
(electricity, heat, cooling, ...) 

– Techno-economic and environmental impact of new 
technologies on operation and planning and 
distribution networks 

– Energy systems environomics 

– Business modelling for emerging  
multi-energy systems (smart communities  
and smart cities) 

– Multi-energy planning under uncertainty  
(decision theory and risk analysis, real  
options valuation, portfolio theory) 
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Outline of the talk 

• Context and challenges 

• It’s not only about electricity 

• Moving beyond electricity-only 

• Distributed Multi-Generation (DMG) 

• Flexible demand from other energy vectors 

• Multi-energy networks 

• Final remarks 
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Context and challenges 

• Challenging environmental targets 

• Volatile and uncertain energy prices  

• Need for network and generation investment in the 

medium to long term 

• Smart approaches to optimize asset utilisation, but 

with unclear business cases in many situations  

• Envisaged increasing penetration of intermittent and 

unpredictable (wind) and inflexible (nuclear, Carbon 

Capture and Storage - CCS) generation –> need for 

flexibility 
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Context and challenges 

• But.. it’s not only about electricity  

• Heat and cooling as major contributions to energy 

consumption and GHG emissions 

• Classical de-coupling of energy vectors is inefficient 

(operation and planning) -> need for efficiency increase 

• Moving from “power” to “energy” Smart Grid paradigm -> 

unlocking hidden sources of flexibility: 

• multi-generation and enabling factors/technologies - 

e.g., heat networks 

• multi-energy demand and storage 

• integrated operation and planning of energy networks 

under uncertainty (centralization levels) 
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It’s not only about electricity 
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Increasing thermal generation efficiency:  
let’s multi-generate 

 Cogeneration (or CHP, Combined Heat and Power) 

     -> simultaneous production of electricity and heat from 

a fuel source  

 Cogeneration effectiveness depending on the possibility 

of increasing environmental performance relative to 

separate production (SP) 

 

 

 

 

 

 

CHP 
black-box 

F (fuel) W (electricity) 

Q (heat) 
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Micro-CHP potential to save primary energy 
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Emission reduction potential from micro-CHP 
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Not only CO2:  

local and global emission evaluations 
 Application: Italian urban areas, regional territory; Energy load scenario: Q / W = 4 
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From cogeneration to flexible  
Distributed Multi-Generation (DMG) 

DMG

F (fuels)

W (electricity)

Q (heat)

R (cooling)

DMG

:
energy 

networks
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Flexible Distributed Multi-Generation (DMG) 
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Example of DMG plant for generation of electricity and heat, with CHP 
prime mover, auxiliary boiler and electric heat pump: 

Virtual CHP Plant - VCHPP 
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Flexible Distributed Multi-Generation (DMG) 
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Example of bottoming generation in a  

Combined Cooling Heat and Power (CCHP) plant  

(CHP prime mover cascaded to an absorption chiller) 
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Flexible Distributed Multi-Generation (DMG) 
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Example of parallel generation in a CCHP plant (CHP prime mover with 
in parallel an engine-driven chiller with heat recovery) 
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Flexible Distributed Multi-Generation (DMG) 
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Energy saving potential from a CCHP plant 
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Emission reduction potential from a CCHP  
plant in a district energy system 
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[MWe] 

ηW 

[pu] 

ηQ 

[p.u.] 

COP 

[p.u.] 

εQ 

[p.u.] 

MT 0.1 0.3 0.55 0.7 0.01 

ICE 5 0.4 0.45 0.7 0.05 

CCGT 100 0.5 0.35 0.7 0.10 

Source: P. Mancarella,D Distributed Multi-Generation Options to Increase Environmental Efficiency in Smart Cities, IEEE PES 
General Meeting 2012, San Diego, July 2012 
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Emission reduction potential from a CCHP  
plant in a district energy system 
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Emission reduction from flexible DMG for 
electricity and heat 
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Matrix modelling of a flexible DMG system for 
real-time demand response 
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DMG planning and robust optimization: 
cope with multi-energy uncertainty 
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Fig. 6.  Results of the multi-scenario analysis: PBT (limited at 10 years) vs. percentage variations of gas price %g  and electricity price %e . 
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Source: G. Chicco and P. Mancarella, From cogeneration to trigeneration: profitable alternatives in a competitive market, IEEE 
Transactions on Energy Conversion, Vol. 21, No.1, March 2006, pp.265-272 
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Can flexible demand from other energy vectors 
provide balancing services? 
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Multi-energy system level  
techno-economic and environmental analysis 
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Physical model of demand-side 
flexible multi-energy technologies 
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Flexibility from heat 
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Flexible demand for the Smart Grid:  
Storing other energy vectors 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

0
0
:0

0
 

0
1
:3

0
 

0
3
:0

0
 

0
4
:3

0
 

0
6
:0

0
 

0
7
:3

0
 

0
9
:0

0
 

1
0
:3

0
 

1
2
:0

0
 

1
3
:3

0
 

1
5
:0

0
 

1
6
:3

0
 

1
8
:0

0
 

1
9
:3

0
 

2
1
:0

0
 

2
2
:3

0
 

0
0
:0

0
 

E
n

e
rg

y
 d

e
m

a
n

d
 (

k
W

) 

Cooling demand 

No control 

+1°C 

+2°C 

+3°C 

Off 
0 

20 
40 
60 
80 

100 
120 
140 
160 
180 
200 

1
0
:0

0
 

1
0
:3

0
 

1
1
:0

0
 

1
1
:3

0
 

1
2
:0

0
 

1
2
:3

0
 

1
3
:0

0
 

1
3
:3

0
 

1
4
:0

0
 

1
4
:3

0
 

1
5
:0

0
 

E
n

e
rg

y
 d

e
m

a
n

d
 (

k
W

) 

Cooling demand 

No control 

+1°C 

+2°C 

+3°C 

Off 

0 

5 

10 

15 

20 

25 

30 

35 

0
0
:0

0
 

0
1
:3

0
 

0
3
:0

0
 

0
4
:3

0
 

0
6
:0

0
 

0
7
:3

0
 

0
9
:0

0
 

1
0
:3

0
 

1
2
:0

0
 

1
3
:3

0
 

1
5
:0

0
 

1
6
:3

0
 

1
8
:0

0
 

1
9
:3

0
 

2
1
:0

0
 

2
2
:3

0
 

0
0
:0

0
 

T
e
m

p
e
ra

tu
re

 (
o
C

) 

Indoor temperature 

No control 

+1°C 

+2°C 

+3°C 

Off 

Outdoor 
0 

5 

10 

15 

20 

25 

30 

35 

1
0
:0

0
 

1
0
:3

0
 

1
1
:0

0
 

1
1
:3

0
 

1
2
:0

0
 

1
2
:3

0
 

1
3
:0

0
 

1
3
:3

0
 

1
4
:0

0
 

1
4
:3

0
 

1
5
:0

0
 

T
e
m

p
e
ra

tu
re

 (
o
C

) 

Indoor temperature 

No control 

+1°C 

+2°C 

+3°C 

Off 

Outdoor 

Cooling control actions and comfort level in commercial buildings 



© 2012 P. Mancarella - The University of Manchester 28 

A business case for flexible demand  
from multi-energy systems? 

Contingency 

Reserve 

4 h 30 min 

Spinning/ 

Standing Reserve 

Secondary 

Response 

30 s 

Primary/High Freq. 

Response 

24 h 
delivery 

National Grid Reserve and Response Time Scales 

STOR 

FCDM, FFR 

FR 



© 2012 P. Mancarella - The University of Manchester 29 

CHP-based Microgrid as a Flexible Virtual CHP 
Plant to balance wind 

Penetration  
Level of  

VPP 
 
 
 
 
 

Future low-flexible system (CCS-nuclear-wind) 

Source: P. Mancarella et al, Report on economic, technical and environmental benefits of Microgrids in typical EU electricity 
systems, WPH, EC FP6 More Microgrids project 
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Microgrid Flexible VCHPP and system planning 

Conventional generation capacity economically displaced 

Source: P. Mancarella et al, Report on economic, technical and environmental benefits of Microgrids in typical EU electricity 
systems, WPH, EC FP6 More Microgrids project 
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Multi-energy networks: 
heat networks as integrated energy systems 

enablers 
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 For same peak heat density and 
similar overall energy 
consumption network costs can 
be very different 

 This depends on both heat 
density/network length 

 Strategic electricity and heat 
network tools are needed 

Consumer 
hourly 

thermal load 
patterns

Hydraulic module: 
network sizing

(max water velocity 
and pressure drop)

Hydraulic module: 
hourly operational 

assessment 
(yearly time span)

Network cost

Thermal module: 

hourly operational

assessment 

(yearly time span)

Network 
topology

Thermal and 
hydraulic input 

parameters

Losses, 

Efficiency, etc.

Economic 
parameters 

(energy prices, 
investment cost, 

etc)



© 2012 P. Mancarella - The University of Manchester 32 

Case study example: heat network  
cost breakdown and performance 
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 Overall network cost tends to 
saturate with load density 

 Network investment cost (based on 
30 years, 7% discount rate) most 
substantial (due to excavation 
cost), followed by heat losses cost 

 

 Specific distribution cost per kWh 
decreases significantly with heat density 
and then tends to saturate 

 Heat distribution efficiency has a similar 
but opposite behaviour (increases and 
saturates with heat density) 
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A tool for multi-energy systems electrical 
distribution network impact modelling 

Load 
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Example: can load-side thermal storage provide  
network support?  

 Impact analysis for different penetration levels of Electric Heat Pumps 
(EHPs) with/without storage, in current and future houses 
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Network reinforcements 

- The insulation improvement (storage in buildings) and/or the physical storage 
(storage in hot water) decrease the EHP impacts on distribution networks 

- Reinforcements saturate at 5% for penetration levels above 50% because the 
feeder conductors need to be changed anyway 

- CBA: is thermal insulation, storage and relevant ICT cheaper than copper? In 
which cases? 
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Optimal electro-thermal distribution network 
design: competition between energy vectors 

Case A Case B 

Number of customers 1000 2000 

Electrical peak density [MVA/km2] 

Base 8.6 17.2 

High  17 34 

Highest  34 --- 

Thermal peak [MWth/km2] 

Base 39 78 

High 77.9 155.5 

Highest  154.4 --- 

Network length [km] 19 28 

• Greenfield design of electricity and heat distribution 

infrastructure in new built areas 

• Assessment of the network cost of an electrical-only 

option (with EHP) vs electricity-and-heat networks 

option 

• Analysis for different load densities and network 

lengths  

Electro-thermal characteristics used in the greenfield design case study 

Source: P. Mancarella et al, Fractal models for electro-thermal network studies, PSCC 2011, Stockolm, Sweden, August 
2011  



© 2012 P. Mancarella - The University of Manchester 36 

 
 

Optimal electro-thermal network design:  
Cost of the different options, £/kWhe+th 
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Source: P. Mancarella et al, Fractal models for electro-thermal network studies, PSCC 2011, Stockolm, Sweden, August 
2011  
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Potential for thermal storage  

in network design 
 

Storage system capable to reduce about 30% of the peak can bring 
down the cost by 10% to 15% (losses-driven optimal network 

design) 
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Flexibility in planning under uncertainty: 
 Real Options Valuation (ROV) 

 Decisions taken in light of subsequent information leading to 

 

 

 

 

 

 Optimal timing of investment – what is the value of waiting and 
stage-expanding? 

 Optimal technology mix for multi-energy networks 

 Flexibility of technology investment under large scale uncertainty 

 Applications: 

– Generation investment 

– Multi-energy network expansion 

– Optimal multi-service contracts for innovative business models 

 

Deferral Expansion Contraction Abandonment 
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Multi-commodity and multi–service  
resources portfolio optimization  
under small-scale uncertainty 
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A Multi-Energy vision 

40 
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AGP – Additional Generation Block 

CHP – Combined Heat and Power 

DCN – District Cooling Network 

DH – District Heating 

EDS – Electricity Distribution System  

GDS – Gas Distribution System 

HDS – Hydrogen Distribution Network 

MG – Multi-Generation 

 

W – electricity 

Q – heat 

R – cooling 

H - hydrogen 

Source: P. Mancarella, G. Chicco, Distributed Multi-Generation Systems: Energy Models and Analyses, Nova, 2009 
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What’s so challenging?  

July 20, 1969, at 20:17:39 
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Back to the origin of power systems...  

There is no innovation without a business case 
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Thank you 

Any Questions? 

p.mancarella@manchester.ac.uk 

mailto:p.mancarella@manchester.ac.uk
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