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Something about myself

= Born in the tip of the heel of the Italian boot
= MSc Power Systems, 2002, Politecnico di Torino, Italy
= Visiting researcher, 2004, Trondheim, Norway

= PhD in Energy Systems, 2006, Politecnico di Torino,
Italy

= Research Fellow, 2006-2007, Politecnico di Torino,
I[taly

= Post Doc, 2008-2011, Imperial College London, UK
= |ecturer, 2011 - current, University of Manchester, UK

(Power system operation and economics, Smart grids
and Sustainable electricity systems)

= 2 books, 5 book chapters, >70 papers on
environomics of energy systems
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Something about myself /ctd

= Main expertise and interests:

— Integrated energy systems (electricity, heat, cooling,
gas, water, transport, ...) and multi-generation
(electricity, heat, cooling, ...)

— Techno-economic and environmental impact of new
technologies on operation and planning and
distribution networks

- Energy systems environomics

— Business modelling for emerging
multi-energy systems (smart communltles
and smart cities)

- Multi-energy planning under uncertainty
(decision theory and risk analysis, real
options valuation, portfolio theory)

© 2012 P. Mancarella - The University of Manchester



Outline of the talk

* Context and challenges
* It's not only about electricity
* Moving beyond electricity-only
 Distributed Multi-Generation (DMG)
* Flexible demand from other energy vectors
* Multi-energy networks

* Final remarks
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Context and challenges

* Challenging environmental targets
* Volatile and uncertain energy prices

* Need for network and generation investment in the
medium to long term

* Smart approaches to optimize asset utilisation, but
with unclear business cases in many situations

* Envisaged increasing penetration of intermittent and
unpredictable (wind) and inflexible (nuclear, Carbon
Capture and Storage - CCS) generation —> need for
flexibility
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Context and challenges

* But.. it’s not only about electricity

* Heat and cooling as major contributions to energy
consumption and GHG emissions

* Classical de-coupling of energy vectors is inefficient
(operation and planning) -> need for efficiency increase

* Moving from “power” to “energy” Smart Grid paradigm ->
unlocking hidden sources of flexibility:

« multi-generation and enabling factors/technologies -
e.g., heat networks

* multi-energy demand and storage

* Integrated operation and planning of energy networks
under uncertainty (centralization levels)
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It's not only about electricity

Energy Flow Chart 2010 Petrol
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Increasing thermal generation efficiency:
let’s multi-generate

= Cogeneration (or CHP, Combined Heat and Power)

-> simultaneous production of electricity and heat from
a fuel source

= Cogeneration effectiveness depending on the possibility
of increasing environmental performance relative to
separate production (SP)

F (fuel) ——> W (electricity)

: CHP
black-box

—> Q (heat)
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Micro-CHP potential to save primary energy
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Emission reduction potential from micro-CHP

CO, Emission Reduction %, average UK generation
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Not only CO2:
local and global emission evaluations

= Application: Italian urban areas, regional territory; Energy load scenario: Q /W =4

Scenario —
1 2 | 3 4 5 o Emission Factors [mg/kWh_]
Efficiencies e
[% share]
(kW] 25 0 | 15 0 0 T Q NO, co THC | SO, PM
100 25 0 10 0 0 0.29 0.48 170 0 1 0 0
75 25 o | 15 | 100 0 - 0.23 | 0.50 450 23 45 0 0
MT
60 25 0 | 10 0 0 0.26 | 0.52 70 47 8 0 0
30 25 0 | 25 0 0 0.27 | 0.49 95 635 1 0 0
180 0 50 | 25 0 0 . 0.34 | 0.49 1500 1000 0 0 0
ICE
980 0 50 | 15 0 100 0.37 | 0.46 1300 870 0 0 0
CO2ER% *
B NOXER%
30
25

penetrazione

penetrazione elettrica %

o2 elettrica %
sce“a . 103 .
sce(\a‘\ox 1 scen Sce‘\a(\f)2
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From cogeneration to flexible
Distributed Multi-Generation (DMG)

F (fuels)
W (electricity)

Q (heat)
R (cooling)

<

DMG

A

DMG

A

ME load
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Flexible Distributed Multi-Generation (DMG)

\ \\ - electricity

-

" >heat

Example of DMG plant for generation of electricity and heat, with CHP
prime mover, auxiliary boiler and electric heat pump:

Virtual CHP Plant - VCHPP




Flexible Distributed Multi-Generation (DMG)
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Example of bottoming generation in a
Combined Cooling Heat and Power (CCHP) plant

(CHP prime mover cascaded to an absorption chiller)




Flexible Distributed Multi-Generation (DMG)

CCHP plant

_________________________________

Example of parallel generation in a CCHP plant (CHP prime mover with
in parallel an engine-driven chiller with heat recovery)




Flexible Distributed Multi-Generation (DMG)
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Energy saving potential from a CCHP plant
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Emission reduction potential from a CCHP

plant in a district energy system

Q,

CHP
: : COP €
electrical capacity [g‘l’J"] [p”S 1l o1l a ]
[MWe] N N N
MT 0.1 0.3 0.55 0.7 0.01
ICE 5 0.4 0.45 0.7 0.05
CCGT 100 0.5 0.35 0.7 0.10
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Emission reduction potential from a CCHP
plant in a district energy system

TCOZ2ER with coal-fired marginal plant
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Emission reduction from flexible DMG for
electricity and heat

Virtual Cogeneration Plant

_________________________________________________________

CHP
prime mover

(T 110, 4,)

user

70
fw= 0.35, 1= 0.45
60
COP 4 °
. /
. 40 /
X z
I = ]
o 30
O \
O 1
20
14.5P=525 g/kWh,
10 1 | #5°=270 g/kWh,
#4,F=200 g/kWh,
0 T T T T 1
0 0.2 0.4 0.6 0.8 1

Qq

Source: P. Mancarella, Cogeneration systems with electric heat pumps: Energy-shifting properties and equivalent plant modelling,
Energy Conversion and Management 50 (2009) 1991-1999
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Matrix modelling of a flexible DMG system for
real-time demand response
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Source: G. Chicco and P. Mancarella, Matrix modelling of small-scale trigeneration systems and application to operational optimization,
Energy, Volume 34, No. 3, March 2009, Pages 261-273
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DMG planning and robust optimization:
cope with multi-energy uncertainty

PBT limited Equipment
to 10 years 25 caseC CaseD CaseE CaseF case heat cooling | electricity
_ ’ ' A CHG CERG EDS
retconsdered B CHP + CHG CERG | CHP + EDS
C | CHP+HRCERG + CHG | HRCERG | CHP + EDS
| ; D | CHP+EHP+CHG EHP | CHP +EDS
_ s 1, E CHP+ CHG GARG | CHP +EDS
g F CHP + CHG WARG | CHP +EDS
5

Control strategies

* E_TOTAL: electrical load-following
« E_PARTIAL: Smart electrical

* H_TOTAL: heating load-following

* H_PARTIAL: Smart thermal

* M_TOTAL: CHP always full power
* M_PARTIAL: Smart CHP full power

H_PARTIAL

Ap,%=gas price

M_TOTAL

per cent variation

Ap.Yo=electricity price

M_PARTIAL

per cent variation

Source: G. Chicco and P. Mancarella, From cogeneration to trigeneration: profitable alternatives in a competitive market, IEEE
Transactions on Energy Conversion, Vol. 21, No.1, March 2006, pp.265-272
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Can flexible demand from other energy vectors
provide balancing services?

Different time scale balancing of supply and demand

Economic

Long-term

N
- Operational Generation Dispatch and
Tr?orlmsmisnsmn Resource Scheduling Real Time
9 Planning ‘ Balancing

Generation &

Years before Months to One day to one Actual delivery:
detivery days before hour before \ " physical generation
delivery delivery & consumption
Adequacy

Energy arbitrage

(long term security) Reserve and response
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Multi-energy system level
techno-economic and environmental analysis

Non intermittent Forecasted Intermittent

generation mix electricity/heat wind power
(incl. Nuclear, CCS) demand

Total system

cost
Total CO,
UC/ED/reliability emissions
modules
Wind
curtailment

Deterministic MILP Stochastic MILP
(half-hourly, 365 days) || (half-hourly, one day)
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Physical model of demand-side
flexible multi-energy technologies

Weather- Input
related
factors

(outdoor »
temperature, ’ »
etc.) Output

Generic black-

Electrcllcal box model of :
Building an multi-energy ‘ Electrical :
features thermal devices demand profile
(insulation, » load . .
age size (lﬂClUdlng
etc.) | models storage)
: Database of device g

| characteristics at
different operating

Occupancy conditions

level, »

patterns of
usage, etc. Operational optimisation
(peak/capacity minimisation,
energy arbitrage, balancing,
ancillary services, etc)
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Flexibility from heat

]

| p———

Heating Unit

Physical stores | A

Auxiliary | | Storage

|_Heater | Tank for
L 4 Space
Heating |

Domestic
Hot Water
Storage |

Heat emitter

D
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Flexible demand for the Smart Grid:
Storing other energy vectors

Cooling control actions and comfort level in commercial buildings

Cooling demand Cooling demand
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$ 180 A S 180
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S ° I/
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> > \V/
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S 40 g 40 \{ +3°C
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A business case for flexible demand
from multi-energy systems?

£25.00

£86 million

£20.00

£87 miillion

£15.00 —

£93 million

£10.00 +

£5.00 +

Average value of service to provider, £/MW/h

Response - Seconds Fast Reserve - 2-15 minutes STOR - >15 minutes
Balancing service and timescale

National Grid Reserve and Response Time Scales

Contingency Spinning/ Secondary Primary/High Freq.
Reserve Standine Reserve Response Response
24 h : :
4h 30 min 30s delivery
STOR FR
FCDM, FFR
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CHP-based Microgrid as a Flexible Virtual CHP
Plant to balance wind

Future low-flexible system (CCS-nuclear-wind)

160

140 —

120 /
//j/ Penetration
100 Level of
VPP
——5%

80

// -1-10%

20%

60 //
40

20 E/

Cost saving (£/kWe/yr)

No flex Flexible energy Flexible + reserve Flexible + R&R

Source: P. Mancarella et al, Report on economic, technical and environmental benefits of Microgrids in typical EU electricity
systems, WPH, EC FP6 More Microgrids project
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Microgrid Flexible VCHPP and system planning

Conventional generation capacity economically displaced

All system types, no wind

16
14

)
E.. 12 I y I
=
=
o 10 - 1 l
[1+]
=
E No flex
= 8 I [ Flexible energy
@
> M Flexible + reserve
o
% 6 - 1 1 1 I M Flexible + R&R
=4 MG capacity
_E"- a - L L l L l
o

2 I — i L L L 1 i L L

0 |

5% 10% 20%

Microgrid penetration

Source: P. Mancarella et al, Report on economic, technical and environmental benefits of Microgrids in typical EU electricity
systems, WPH, EC FP6 More Microgrids project
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Multi-energy networks:
heat networks as integrated energy systems
enablers

[Elyear] ® Annualized capital cost of
substation [E/year]

2,000,000 B Annualized network fixed costs
[Elyear]
B Annual pumping costs [E/year]
1,500,000 +

Hydraulic module:
network sizing

Annual heat losses cost [E/year] 3 p/kWh
p

72 GWh
35 km
11% losses

(max water velocity
and pressure drop)
1,000,000 -

5w
Lok Thermal module:
hourly operational

(:;i\ X ‘ml‘:"‘ assessment 1.7 p/kWh
Eh (yearly time span)
500,000 - 68 GWh
19 km
7% losses
e : .
1000 3000
number of connection points, 21.5 MW/km2
Ry
For same peak heat density and H s ! SXT
similar overall energy 'l" At %
_ consumption network costs can P ey I D »
-y - & be very different ;f : % NG
o - ;I- et A/
F This depends on both heat : Ty S
> 7 3 . o 7 f &
¥ | density/network length _ %"E f
)\ . . . i e N 7
Strategic electricity and heat oy

network tools are needed
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Case study example: heat network
cost breakdown and performance

[£/year] Annualized capital cost of substation

[£/year] =  Qverall network cost tends to
1,600,000 mAnnualized network fixed costs saturate with load density
1,400,000 , L&/vear] = & & " Network investment cost (based on
1 200.000 30 years, 7% discount rate) most
substantial (due to excavation
1,000,000 cost), followed by heat losses cost
800,000 -
600,000 -
400,000 -
200,000 -
0 4.5 — [p/kWh] [%] 100
21.4 35 48 5 62. 1 75. 6 89.2 102 7 116 130 4.0 — /
heat peak density [MW/km?] 3.5 / Cost of heat distribution -
3.0 / per kWh [p/kWh] —
2.5 heat distribution _ 90
/ efficiency [%]
2.0 +— | a5
Specific distribution cost per kWh 1.5
decreases significantly with heat density ; g | 80
and then tends to saturate 0.5
Heat distribution efficiency has a similar g g e 75
but opposite behaviour (increases and CES A RS A S LRI IR
N

saturates with heat density) heat peak density [MW /km?]
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A tool for multi-energy systems electrical
distribution network impact modelling

OpenDSS
Representation

Simulation
Impact Analysis
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Example: can load-side thermal storage provide
network support?

= Impact analysis for different penetration levels of Electric Heat Pumps
(EHPs) with/without storage, in current and future houses

==¢==Current House Good Insulation without storage
== Current House Good Insulation with storage

Storage modulation

I Future House Improved Insulation without storage
COP function of tem peratures ST.ch _ o ST.dis qc) === Fyuture House Improved Insulation with storage
ere ~rw E 1% , ~
o
HP o 3 /\/
T(e) | : 2
. Y ¢
Groaa\E) + Adoea () i < -
Actual i i 3 //
PEt: hermal | ' &
E(t) Heat thermal ; & . A
profile seen: B B <
SR by the heati B m i s
Electrical pump | l ES
oad | COP(t) : Heat |
! Heat load |
i storage I 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1
i i Penetration level
I —— |

Network reinforcements

- The insulation improvement (storage in buildings) and/or the physical storage
(storage in hot water) decrease the EHP impacts on distribution networks

- Reinforcements saturate at 5% for penetration levels above 50% because the
feeder conductors need to be changed anyway

- CBA: is thermal insulation, storage and relevant ICT cheaper than copper? In
which cases?
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Optimal electro-thermal distribution network
design: competition between energy vectors

« Greenfield design of electricity and heat distribution
Infrastructure in new built areas

« Assessment of the network cost of an electrical-only
option (with EHP) vs electricity-and-heat networks
option

« Analysis for different load densities and network
lengths

Electro-thermal characteristics used in the greenfield design cas

Case A | Case B
Number of customers 1000
Base 8.6
Electrical peak density [MVA/km?] High 17
Highest 34
Base 39
Thermal peak [MW ,/km?] High 77.9
Highest 154.4
Network length [km] 19

Source: P. Mancarella et al, Fractal models for electro-thermal network studies, PSCC 2011, Stockolm, Sweden, August
2011
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Optimal electro-thermal network design:
Cost of the different options, £/kWhe+th

o o - C/kWhtot'r 1.0

base density, 1000 | Tl 08
— |
high density, 1000 |- |
| T 0.6
highest density, 1000
3 7 04
=
' l
base l‘ 0.2
density,
2000 + 0.0
high' \\I_‘___'_ e i t COP=2 COP=3
density, half ex. cost 2o°¢ €% €03
2000 one fourth ex. cost

Analysis for different excavation costs and EHP performance

Source: P. Mancarella et al, Fractal models for electro-thermal network studies, PSCC 2011, Stockolm, Sweden, August

2011
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Potential for thermal storage
in network design

S - - - Tm—— c/kWhtot

| base density, 1000 I‘ 0.5

1/

high density, 1000 r 0.4

highest density, 1000

. o2
~] 0.1
base density, “H_ﬁ_‘ |
2000 I 0.0
high density, =~ - without with storage
2000 with heat storage
network

Storage system capable to reduce about 30% of the peak can bring
down the cost by 10% to 15% (losses-driven optimal network
design)
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Flexibility in planning under uncertainty:
Real Options Valuation (ROV)

= Decisions taken in light of subsequent information leading to

Deferral Expansion Contraction

= Optimal timing of investment — what is the value of waiting and
stage-expanding?

= Optimal technology mix for multi-energy networks
=  Flexibility of technology investment under large scale uncertainty
= Applications:

— Generation investment

— Multi-energy network expansion
— Optimal multi-service contracts for innovative business models
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Multi-commodity and multi—-service
resources portfolio optimization
under small-scale uncertainty

emissions energy saving
........... »GHG (Ceo, ) energy-related trading

........... > PES (Cy)
28pa) CHP 12248 =) heat.
R (p,) | Plant — |7 energy trading
—_— | (”W! ’7Q) >
| WCHP L Wi WO (peo)
ancillary services
electricity and “others”
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A Multi-Energy vision

fuel / GDS AGP - Additional Generation Block
CHP - Combined Heat and Power
DCN - District Cooling Network

DH - District Heating

EDS - Electricity Distribution System
GDS - Gas Distribution System

HDS - Hydrogen Distribution Network
MG - Multi-Generation

storage / HDS

W - electricity
Q - heat
R - cooling

H - hydrogen
single site energy single site
storage / HDS o networks (MO~
g local load) local load)

single site single site
(MG + (MG +
local load) local load)
fuel / GDS

Source: P. Mancarella, G. Chicco, Distributed Multi-Generation Systems: Energy Models and Analyses, Nova, 2009
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What's so challenging?

July 20, 1969, at 20:17:39
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Back to the origin of power systems...

There is no innovation without a business case
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Thank you
Any Questions?

p.mancarella@manchester.ac.uk
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