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Definitions for today

e Smart meter data — hourly averaged
observations of electricity consumption, typically
spanning a year or more

 Energy efficiency (EE) — reductions in energy
demand (kWh) through engineered efficiency,
service substitution, conservation, controls, or
waste reduction

e Demand response (DR) — automated or manual
control of power demand (kW) on command,
achieved through energy storage, load
curtailment, or other control changes



Talk outline

Mitigation efforts will require unprecedented delivery
of energy efficiency (EE) and demand response (DR)
resources.

Smart meter data can facilitate EE and DR by enabling
well informed and targeted programs to reach all
customers.

Meter data expresses the diversity of site conditions
and occupant preferences and behaviors most
responsible for variation across homes.

Meter data reveals information about
occupant/behavior/habit driven energy choices

There is much more public interest analysis that can
be done!
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Building efficiency mitigation challenges

Future programs must out-
perform current programs

Timely changes must come
from existing buildings

Demographics weakly
predict energy performance
and characteristics

There is limited building
attribute data available

Energy consumption
characteristics vary widely
across buildings

Focus on methods and tools that can identify deep
savings and scale to the whole population

Focus on technologies and processes that can be
retrofit (e.g. operations and controls) ; pursue
organizational and behavioral changes

Use consumption data to plan and evaluate
projects: look for patterns of use that indicate
opportunity; benchmark using peer comparison

Extract metrics (descriptive and predictive) from
meter data, public records, digital maps, etc.

Go beyond blanket prescriptions: identify
candidates for targeted savings and group similar
customers to repeat successful strategies
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A year of data made legible
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Sampling zones for the Wharton data

PGE sampling zones (10,000 accounts each)

B Central Valley
= Coast
B Inland Hills

30,000 accounts

10,000 randomly
sampled from each
of 3 zones

Hourly electricity

Daily natural gas
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Wharton sample

Meter count by zip code
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Examples of smart meter data analysis

Smart meters record actual consumption, the sum of all
relevant end uses, complete with occupant behaviors and
schedules, automation, and imperfections

Smart meter data documents patterns of consumption in
unprecedented spatial (individual customers) and
temporal (hourly) detail

Automated analytical algorithms, using meter data as
inputs, can scale to large populations
— As of May 2012, electric US utilities had deployed ~36 million

smart meters (1 in 3 households), with 65 million projected to
be deployed by 2015

Examples and analysis drawn from large samples of PG&E’s
4.5M residential customers



Ex 1: Baseload

Estimating energy consumption of always on
equipment



New with hourly data: Load shapes!
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Annual fraction of energy attributable to base load energy

fraction of annual energy
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Minimum loads
contribute:

<20% of annual energy
use in fewer than 5% of
homes.

>40% of annual energy
use for 45% of all
homes.
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Ex 2: Targeting

Differentiation of program implementation
opportunities across premises and within each
JEINE



Electricity usage correlation with demographics

kWh vs. zip code ageregated household chacacteristics N=617
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Often non-zero, but explain a small fraction of variance.
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Distribution of annual kWh demand

Histogram of annual kWh (N=22300)
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fraction of total annual electricity
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fract. fract.
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Ex 3: Thermal data analysis

Regression modeling to fit drivers of home
energy demand

Several competing models describe different
operational strategies

Model selection determines the best model
per household and overall

Model parameters can be interpreted as
physically meaningful customer attributes
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Distributions of model coefficient estimates
(N=160,000)
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Modeled annual cooling energy
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Cumulative estimated electric cooling
and heating energy

Annual cooling CDF (total=5580 GWh)

Annual heating CDF (total=2460 GWh)
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Changing set points

Re-calculate annual estimates with modified change points

Cumulative distributions of annual cooling energy with modified cooling set points
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Ex 4: Peak demand

Characterizing the timing and magnitude of
household annual peak demands and their
relationship to grid peak demand



Calendar of peak demand hours for
every household

Date of highest hour of usage
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Highest usage correlates with hottest and coolest temperatures; also influenced by holidays.
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Time of day of peak demand hours for

every household
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Density of outside temperature percentile
for peak demand day

Temperature percentile for peak day of demand
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Peak cooling by outside temperature
and location

Residential cooling for peak demand day by outside temperature and zip code
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Peak coincident cooling

Cumulative residential cooling energy on peak demand days
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Ex 5: Direct occupant control

Direct control leads to unscheduled variation in energy use
It involves important end uses like laundry, TVs, microwaves,
hair dryers, electric ranges, etc.

— It can be seen as an indication of occupancy (and activity)

It will create transient modeling errors that wind up in the
residuals of a predictive model

— Large residuals likely to contain contribution from occupant
controlled load

We can estimate the timing of occupant control based on
large, transient residuals

We can place similar timing patterns into “lifestyle” groups
and infer targeting criteria from group characteristics



Inspiration for defining occupant controlled loads

Example KW demand
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Occupant controlled loads is when loads directly controlled by occupants are
operated (blue above). This is actual sub-metered data (not from PG&E). Our work

requires estimation of the timing of occupant controlled loads.
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Observations with estimated occupant activity

Observations and modeled outliers
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Count of occupant activity by hour of day

Count of occupant activity indicators by hour
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| computed similar empirical distributions for all 24,000 households whose data supported
them. The following slides depict the results of clustering those distributions into groups by
similarity.



Weekday occupant activity cluster centers

Centers of hour of day occupant activity clusters
1 (13%) 2 (10%) 3 (9.4%) 4 (8.2%)
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Hour-of-day cluster members

Members of hour of day occupant activity clusters
3 (9.4%)

1(13%)

0

8.2%)

e :;:\:
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) Membership of K-means hour-

of-day clusters (K=16), with
each row representing a single
household. Relative magnitude
of probabilities are color coded
from blue (low) to white (mid)
to red (high). Consistency of
patterns across rows suggest
good cluster performance.
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Day-of-week cluster centers

Centers of day of week occupant activity clusters
1 (18%) 2 (17%) 3 (16%) 4 (13%)
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Cluster membership and cluster centers for empirical distributions of occupant driven

load probabilities by day of week (Su through Sa). Note the prevalence of higher relative
probabilities on weekends — and that some households are lower on weekends.

Sam Borgeson LBNL 3/20/14 39



Day of week cluster members

members

Members of day of week occupant activity clusters
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Politics of smart meters

e Large up front costs, long payback — rate payer advocates are
worried

— In CA, roughly S4B for 11.4M meters, about $350 per meter
e Largest official benefits accrue to utilities, rather than customers

— reduced meter reading budgets and DR benefits from real-time pricing
e Significant opposition to meter installation

— Stated concerns include privacy, utility control of loads, and EMF
emissions

e All point to lack of trust and low expectations for benefits

e Customers need to have their concerns addressed
and see benefits for themselves

SMAHT METER K '
MANT'""ETER \ .-
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Future work: EE and DR programs

e Testing empirical targeting outcomes for real programs

— Retrospective natural experiments to see if targeting methods
can predict successful program participation

— Randomized control trials to quantify empirical targeting
benefits over current practice

* |Improving program evaluation
— Baseline and savings estimates based on meter data

— Savings estimates based on identifying the fingerprints of
specific measures

— Evaluation using randomized controlled trials
 Holistic grid planning
— Using meter data to form a more spatially and temporally
detailed model of demand

— Strategic targeting of EE and DR to reduce congestion, support
renewable energy integration, etc.



Future work: Research agenda

Apply similar techniques to commercial customers

Tools to educate and inform customers: visualization and
analysis

Comparing customers and cultures across service territories

Investigation of behavioral factors that influence
consumption

More precise quantification of targeting potential

Market segmentation studies using meter data

Change and fault detection to find problems as they happen
End-use disaggregation from whole home data

Estimating appliance ownership

Combined study of communicating thermostat and smart
meter data to model household thermal properties, patterns
of occupancy, etc.

Applying similar techniques to water consumption



Conclusions

Climate change mitigation in buildings is significantly different from
traditional energy efficiency and demand response program motivations
and will require significant changes to programs

Smart meter data can provide information to support more aggressive
and more personalized energy efficiency and demand response programs

Examination of overnight minimum consumption corroborates the
growing role of plug loads and vampire loads in total energy consumption
Meter data reveals spatial and temporal patterns in cooling

— The cooling efficiency and demand response potential is dominated by a
minority of now identifiable households

— Modest set point changes can produce very significant energy savings

The differences within temperature bands or demographic categories can
exceed differences across those groups

Current practice is not capturing some of the most promising potential
benefits of meter data

Creative uses of meter data for public benefit are compatible with
practical privacy protections, but require support from policy makers



Questions & Discussion
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