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Duration curve

Characteristics of fluctuating generation
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Ram P ra tes Characteristics of fluctuating generation
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Interval availabil |ty Characteristics of fluctuating generation
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Load curve CA versus GER
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Wind generation

CA versus GER
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Yearly availability of wind onshore

Germany
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Photovoltaic generation CA versus GER
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Mobili ty behavior Characteristics of mobile storage

= Trip start times, driving distances and driving time determine the energy available for
demand response.

= Mobility behavior varies on different days of the week.

= Vehicle users show specific driving characteristic.
= German users with positive TCO drive more than 15,000 km per year and live in urban
areas.

3.5%
— WD start trip probability

3.0%

—Sat start trip probability

2.5%

2.0%

Probability [%]

0 < g 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92

Time steps

\

Data basis: MID, 2010
TCO: Total costs of owner ship ~ Fraunhofer

ISI



Grid mana gemen t time Characteristics of mobile storage
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Grid mana gement t ime Characteristics of mobile storage
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Vehicle locations

= Vehicles mainly park at home.
=  Grid management time while parking at home is the longest.

= Public parking is diverse, difficult to predict and does only slightly increase the
electric driving share

= Beside a smart meter in the vehicle, private homes are most attractive to install smart

infrastructure.
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Cost per KWh discharge [€/KWh]

Optimistic V2G cost assumptions
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V2G with today's Li- lon
batteries is in most cases not
economic

The average base peak price
spread was 3ct./kWh in
Germany 2010

Advanced batteries with
higher cycle life and lower
investment could be
competitive in electricity
markets with a high base-
peak- spread of the electricity

prices (6 ct./kwh)

Aging can be implemented
based on the depth of
discharge or the energy
throughput

Investment ¢,,, =247 €kWh

usable energy

for the battery system
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Simulation Method
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Merit-order effect
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Price-based demand response and V2G

System Level

P
",E’ﬁerACE mﬂ

Distribution Grid Level

Device Level

Mobility Behawior

Device- Agent (PEV)

Deterministic Moael

am - $9- 191

Stochastic Model

Pro .. (day)

Pro (day)(t)
PIUJ"E( (day)
Pro, . (day)(t)

Vehicle

y

Battery

Optimization

T

Prices on system level account
for the merit-order effect

To avoid simultaneous action of
automated demand response a
variable grid fee is added to the
price signal on system level

To account for 12 million vehicles
12,000 vehicles are modeled
using individual driving behavior

Critical review:

- The model does not account
for transmission grid restrictions

- System exchange is not
considered

- Consumer acceptance for
dynamic prices and price
sensitivity are not considered

- Perfect tip forecasting
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Scenario
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Vehicle Scenario

: : = PHEVs' TCO is lower compared
Plug-in vehicle type: to BEVs with battery swapping
or high power charging

Grid

Usable . . CA 2030 GER 2030 = Usable batterv storage is
bevice  P®  storage  Connection  Eauivalenteneray (g5 niion (12 milion y storag
m [kwh] p[cl)(‘\IIvV?r use et/ KM PEVs) PEVs) expected to be <15 kWh
1 PHEV (25) 4.5 4 0.18 31.60% 31.60%
2 PHEV(57) 12 4 0.21 £0.40% £0.40% * For CA and GER, the same
3 BEV (100) 15 8 0.15 13.90% 13.90% proportionate share of PEVs is
4 BEV (167) 30 8 0.18 4.00% 4.00% assumed
_ . = Grid connection is between
Penetration scenario: 4 kW and 8 kW
CA 2030 GER 2030 .
Tvpe Vehicles Connection Storage Vehicles Connection Storage = The power/energy ratio of the
yp [thousand]  power [GW] capacity [GWh] | [thousand] power [GW] capacity [GWh] total fleet for CA 2030 and GER
PHEV (25) 2,150 8.60 9.68 3,885 15.54 17.48 :
PHEV (57) 3,430 13.72 41.16 6,585 26.34 79.02 2030 IS O441/h
BEV (100) 945 7.56 14.18 1,230 9.84 18.45
BEV (167) 275 2.20 8.25 300 2.40 9.00 = German pumped storage plants
Sum 6,800 32.08 73.26 12,000 54.12 123.95 provide 7.76 GW with a rated

volume of 224.31 GWh
(ratio: 0.035 1/h).
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Energy scenario

Details of CAISO scenario = CA solar time series are combined from
different installation types

Technology Installed capacity [MW] _ _ .

Total photovoltaics (PV) 6,661 = The energy production of fluctuating RES is

S, o 47.6 % for CA and GER in the 2030 scenario

Customer Side PV 1,749

Out c;f Stlate F;IV | 340 = In the CA 2030 scenario solar generation

I:rtgae Solar Thermat v 232’2 accounts for 24 % of total generation vs. 11%

Out of State ST 400 for GER 2030

Wind 9,436

= The installed capacity of fluctuating RES is
162 % and 96.7 % of the peak load for GER
and CA, respectively.

Fluctuating renewable energy sources (RES)

. Wind Wind Photo- Share of fluctuating RES-E  Total electricity demand .
Scenario ) Solar thermal ) : ] : Unit
onshore offshore  voltaics (peak load; generation)  (peak load; generation)

Capacity 37.8 25 63 - 162.00% 77.8 GW

GER 2030 ,
Generation 87 95 57 47.60% 502.1 TWh
CA 2030 Capacity 28.2 - 19.9 13.3 96.70% 63.5 GW
Generation  71.403 - 43.051 30.158 47.60% 303.806 TWh
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Results
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A new thinking of base and peak load
necessary

@ Wind SolarThermal PV @Residualload m Negativeresidualload
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-5000

Hour of the day [h]

= For the scenario CA 2030 the electricity system is dominated by solar generation

= Low residual load periods are likely during noon

= Peak residual load often occurs during the evening and morning hours

= But still periods with low solar and wind generation or several days with strong winds can occur

= Periods when fluctuating generation exceed the electricity demand (negative residual load) most
likely occur between 12:00 and 16:00 in the CA 2030 scenario

\
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Scenario 2030: Yearly availability of the
residual load

Scenario Germany 2030
100% I R R B BN BN EEeEme

quantile sections
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Time of use rate and automated demand
response of plug-in electric vehicles

30

50,000

40,000

=
30,000 E
3z oy
2 =,
£ 12 £
© 20,000 z
3 >
@ PEVs demand TOU Total system load (CA summer) OTOU tariff B

10,000 b

Mon Tue Wed Thr Fri Sat Sun
0 0
1 9 17 1 9 17 1 9 17 1 9 17 1 9 17 1 9 17 1 9 17 1
Time [h/day]

: : . = For automated demand response
Time of use rate for electric vehicles: time of use rates (TOU) can increase

ramping and load peaks

Super Off Peak Off Peak Peak Off Peak
Time period Midnight—-5am 5am-12pm 12 pm -6 pm 6 pm - Midnight Cp .
= For the grid integration of
Rate 14.4ct/kWh 16.7ct/kWh 25.7ct/kWh 16.7ct/kWh

fluctuating RES common TOU rates

Source: TOU rate (Pacific Gas and Electric, 2011) are too |aneX|b|e
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Scenario GER 2030: Demand side
management (DSM) using real-time prices

100,000

MPEVs lasttrip [ Total system load M PEVsSDSM B Residual load

80,000

60,000

40,000

Load [MW]

20,000 -

24 8 16 2 8 16 24 8 16 24 8 16 16 24 8 16 24 8 16 24
Time [h/day]

= Last trip charging increases the peak load and does not allow to balance fluctuating generation

= The implemented demand side management mechanism follows the residual load without
curtailment of driving behavior
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CA scenario 2030: Plug-in electric vehicles
(PEVs) automated demand response

100% - 64
< O Fluctuating RES generation M Neg. residual load O PEVs load (DSM) O Residual load
= 80% - 51
)
E
8 60% 38 3
o 8
~ 1)
= 40% 25§
£ 2
e -]
j 0
E 20% 13 g
g &
v 0% 0
0% 95% 90% 85% B80% 75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% SWN%
-20% -13
Time period [% one year]
-40% - b -25
E,pos E,neg P,min P,max
TWh GW
1 Load 303.8 23.1 63.5
O Residual load 159.2 -1.53 -16.8 45.6
0O PEVs load (DSM) 14.0 -0.45 -10.9 459
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Scenario 2030: CA versus GER

Sorted normalized power [%]

Sorted normalized power [%]
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16
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31

13

13

Sorted power [GW]

Sorted power [GW]

In CA high capacity credit of
RES: peak residual load is
71.1 % vs. 90.4 %

The need for peak capacity in
CA is reduced whereas the
needed peak capacity in GER
IS rising

Negative residual load

consumed by PEVs in CA is
higher: 73 % vs. 64 %

Reduction of negative residual
load peak for CA and GER is in
the same range
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Hour of the day with negative residual load
and reduction due to PEVs' DSM

Hours of the day
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DSM: Demand side management
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Scenario CA 2030: Reduction of ramp rates

Sorted normalized ramp rate [%]
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-5.0%
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Time period [% one year] \

rrfpos H pos opos H neg aneg xy=0
1 System load 1.05% 2.12% 1.60% -2.07% 1.83%  50.59%
0 Residual load (CA 2030) 1.99% 4.38% 4.53% -3.63% 3.14%  54.70%
[0 PEVs demand side management 1.68% 3.07% 4.10% -3.64% 3.06%  45.76%
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Conclusion

= The electricity generation from fluctuating renewable energy sources (RES) determines the
residual load of low carbon electricity systems.

= The contribution of storage and demand response therefore is very sensitive to
generation time series and weather years.

=  Plug-in electric vehicles can be characterized as short term storage with very high
power to energy ratio (Factor 10 compared to hydro pump storage ) and restrictions
due to mobility behavior

= The daily pattern of RES power generation in the CA 2030 scenario favors the
integration of electricity from fluctuating generation compared to the GER 2030
scenario

= The same argument applies, if photovoltaics and wind power are compared with each
other. The daily pattern of photovoltaic generation favors the storage capabilities of
electric vehicles, if charging infrastructure is available where the vehicles are parked
during the day.
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Thank you for your attention !

Acknowledgement:

% Federal Ministry for the
4 Environment, Nature Conservation
and Nuclear Safety

% Federal Ministry
of Economics

and Technology

Contact :

M.Sc. David Dallinger
Fraunhofer Institute for Systems
and Innovation Research
Breslauer StralBe 48

76139 Karlsruhe

Germany

Phone: +49 721/ 6809-404
Fax: +49 721/ 6809-152

David.Dallinger@isi fraunhofer.de First German offshore wind turbine (http:/Avww.alpha-ventus.de/)

\

~ Fraunhofer

ISI



Optimal power plant park

Total electricity generation costs
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Time series used

Method of data Weather

Time series Scenario preparation year Source
Wind onshore GER Measured 2007/2008 EEX, 2011
Wind offshore GER Measured /2009  Schubert, 2010/11
Wind offshore IWES GER GER 2030 Weather data (model) 2007 Lange, 2011
Photovoltaics GER Weather data (measured) 2007/2008  Schubert, 2011
Load GER Measured /2009 ENTSO-E, 2011
Wind CA
Solar Thermal CA CA 2030 Weather data (measured 2005 CAISO, 2011 and
Photovoltaics CA and model data) NREL, 2009
Load CA Measured 2005
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Cycle life time in dependence on depth of
discharge

Depth of discharge (SOC-Swing)[%]
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Interaction of different players in the E.ON
and Volkswagen fleet test
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V2G depth of discharge vs. energy
throughput

Operation [kW], state of charge
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Scenario GER 2030: Possible contribution of
V2G
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Sensitivity: Weather year and mobility data
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Sensitivity: Power

Consumption of negative residual load

Peak load
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Negative residual load change varying the

generation share of photovoltaics
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Grid management time during the day and
after the last trip

Grid management time [h]
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Scenario 2030 parameters

RS GER 2030 RS CA 2030
Cfoos 38.8 % rrf,, 2.03 % | cfyq 28.9 % rrf, 1.99 %
Cfrag  0.285% Ko 439 % [ 0278 % Mg 4.38 %
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