The stabilization limits of v-flame and conical flames are investigated in normal gravity (+g) and reversed gravity (upside-down burner, -g) to compare with observations of flame stabilization during microgravity experiments. The results show that buoyancy has the most influence on the stabilization of laminar v-flames. Under turbulent conditions, the effects are less significant. For conical flames stabilized with a ring, the stabilization domain of the +g and -g cases are not significantly different. Under reversed gravity, both laminar v-flames and conical flames show flame behaviors that were also found in microgravity. The v-flames reattached to the rim and the conical flame assumed a top-hat shape. One of the special cases of -g conical flame is the buoyancy-stabilized laminar flat flame that is detached from the burner. This flame implies a balance between the flow momentum and buoyant forces. The stretch rates of these flames are sufficiently low (\< 20 s^{-1}) such that the displacement speeds *S _{L}* are almost equal to the laminar burning speed