On the Mechanism of Nonaqueous Li–O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries

TitleOn the Mechanism of Nonaqueous Li–O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries
Publication TypeJournal Article
Year of Publication2012
AuthorsMcCloskey, Bryan D., Rouven Scheffler, Angela Speidel, Girish Girishkumar, and Alan C. Luntz
JournalThe Journal of Physical Chemistry C
Volume116
Issue45
Pagination23897 - 23905
Date Published11/2012
ISSN1932-7447
Abstract

Quantitative differential electrochemical mass spectrometry and cyclic voltammetry have been combined to probe possible mechanisms and the kinetic overpotentials, responsible for discharge and charge in a Li–O2 battery, using C as the cathode and an electrolyte based on dimethoxyethane as the solvent. Previous spectroscopy experiments (X-ray diffraction, μRaman, IR, XPS) have shown that Li2O2 is the principle product formed during Li–O2 discharge using this electrolyte/cathode combination. At all discharge potentials and charge potentials <4.0 V, the observed electrochemistry is 2e/O2 consumed or produced, also implying that Li2O2 is the dominant thermodynamically stable species formed and consumed in the electrochemistry. No evidence exists at any potential for formation of stable LiO2 (1e/O2) or Li2O (4e/O2) during discharge. At charging potentials >4.0 V, the electrochemistry requires significantly more than 2e/O2, and we take this as evidence for electrolyte decomposition. We find that sequential concerted (Li+ + e) ion transfers to/from adsorbed O2* and LiO2* to produce/consume Li2O2 is the mechanism that is most compatible with these experiments. The kinetic overpotentials are extremely low relative to aqueous O2 reduction and evolution, and this implies that in principle a discharge–charge Li–O2 cycle is possible with high voltaic efficiency (∼85%) if electrolyte and cathode stability issues are resolved.

DOI10.1021/jp306680f
Short TitleJ. Phys. Chem. C
DOI10.1021/jp306680f