A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.

TitleA Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.
Publication TypeReport
LBNL Report NumberLBNL-6601E
Year of Publication2014
AuthorsLess, Brennan, and Iain S. Walker
Abstract

The current state of Deep Energy Retrofit (DER) performance in the U.S. has been assessed in 116 homes in the United States (US), using actual and simulated data gathered from the available domestic literature. Substantial airtightness reductions averaging 63% (n=48) were reported (two- to three-times more than in conventional retrofits), with average post-retrofit airtightness of 4.7 Air Changes per House at 50 Pascal (ACH50) (n=94). Yet, mechanical ventilation was not installed consistently. In order to avoid indoor air quality (IAQ) issues, all future DERs should comply with ASHRAE 62.2-2013 requirements or equivalent. Projects generally achieved good energy results, with average annual net-site and net-source energy savings of 47%±20% and 45%±24% (n=57 and n=35), respectively, and carbon emission reductions of 47%±22% (n=23). Net-energy reductions did not vary reliably with house age, airtightness, or reported project costs, but pre-retrofit energy usage was correlated with total reductions (MMBtu). Annual energy costs were reduced $1,283±$804 (n=31), from a pre-retrofit average of $2,738±$1,065 to $1,588±$561 post-retrofit (n=25 and n=39). The average reported incremental project cost was $40,420±$30,358 (n=59). When financed on a 30-year term, the median change in net-homeownership cost was only $1.00 per month, ranging from $149 in savings to an increase of $212 (mean=$15.67±$87.74; n=28), and almost half of the projects resulted in reductions in net-cost. The economic value of a DER may be much greater than is suggested by these net-costs, because DERs entail substantial non-energy benefits (NEBs), and retrofit measures may add value to a home at resale similarly to general remodeling, PV panel installation, and green/energy efficient home labels. These results provide estimates of the potential of DERs to address energy use in existing homes across climate zones that can be used in future estimates of the technical potential to reduce household energy use and greenhouse gas emissions through DERs.

AttachmentSize
pdf1.36 MB