The Materials Project: Combining Quantum Chemistry Calculations with Supercomputing Centers for New Materials Discovery

December 18, 2012 - 12:00pm
Seminar Host/Point of Contact: 

New materials can potentially reduce the cost and improve the efficiency of solar photovoltaics, batteries, and catalysts, leading to broad societal impact. This talk describes a computational approach to materials design in which density functional theory (DFT) calculations are performed over very large computing resources. Because DFT calculations accurately predict many properties of new materials, this approach can screen tens of thousands of potential materials in short time frames. We present some major software development efforts that generated over 8 million CPU-hours worth of materials information in the span of a few months, identifying several new Li ion battery cathode materials that were verified experimentally. This represents one of the largest materials data sets ever computed, and the results are compiled on a public web site (The Materials Project) with over 3,000 registered users that are designing new materials with computed information. Finally, we describe future efforts in which algorithms might "self-learn" which chemical spaces are the most promising for investigation based on the results of previous computations, with application to solar water splitting materials.

Add event to Google Calendar

Announcement List

To be added to our seminar annoucement list please, email ETA Seminars. Seminars may change without notice, stay informed by joining our seminar email list. 

Site Access

For site access please email your request to ETA Seminars. To arrive at Building 90 via the LBNL shuttle, take "Blue Uphill". Click here for the shuttle schedule. To ensure your site access is set-up send your request 36 hours in advance of the seminar.

Remote Access

Not able to attend in person? Remote participants can use ReadyTalk Audio & Net conference to phone in to listen, while viewing the presentation via the ReadyTalk site.

Web Access Code: 4864835

USA & Canada call-in number:
1 (866) 740-1260
Access Code: 4864835#

International callers:
Please visit this website to see if a toll-free call-in number is available for your international location.

If not, you will need to pay for the call yourself and use this phone number:

(303) 248-0285.