Three Questions

Jim Driscoll, University of Michigan

1. What models are best - to predict measured values of Flame Surface
Density and Turbulent Burning Velocity ?

2. Do X andS;increase with u’- or do the curves level off ?

3. Can new cinema-PIV tell us the correct physics - to add to LES,
and to assess DNS?

Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities,
J.F. Driscoll, Progress in Energy and Combust. Sci. 34, 2008, p. 91.
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What models are best -for flame height, S;, FSD ?

DNS
LES with subgrid G-eqn

LES with subgrid FSD balance

Bell, Day, Grcar

Sankaran and J.H. Chen

Pitsch and Duchamp de Lagenest
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DNS of Bell, Day, Cheng, Shepherd
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Flame Height

Bell, Day, Grcar,
Filatyev, Driscoll

Experiment Simulation
6 = 6

Experiment of Filatyev and Driscoll
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Flame Surface
Density

Flame Surface Density ¥ (1/mm)
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S, computed by Peters using G-eqn
General agreement with Bradley data

S, computed by Coherent Flamelet
Model of Duclos — agrees with Bradley



Do S; and X increase with u’,

or do curves become flat ?
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Role of vortices vs. hydrodynamic instability

Classic vortex idea

e positive strain rate is correlated with
negative curvature

*so Rstrain—curvature = negative

products

negative
curvature

positive

OO

reactants

Hydrodynamic instability

* Converging & diverging streamlines

* Positive strain rate correlates with
positive curvature
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Visualize: turbulent eddies, flame, hydrodynamic instability

Cinema Stereo-PIV

* PIV images at 1,111 frames /sec

*Two high-rep-rate Nd:YAG lasers, Phantom digital cameras
*12.8 mm x 18.2 mm field of view, 140 um vector spacing
* slot Bunsen flame, U =1 m/s, methane/air,
0=0.7,u’/S;,=23

horizontally polarized 45° polarized
& ke 7 '

PBS
4]
[ HWP

[

‘. I ] Nd:YAG laser 2
vertically polarized

Nd:YAG laser 1
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Pair of turbulent eddies wrinkling flame

Vorticity (w,) between -700 s (blue) and 700 s (red)
* Field of view: 6 mm x 10.5 mm, At = 0.9 ms
e Reactants on left, flow is upward
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Pair of Turbulent Eddies Wrinkling Flame

t=0ms t=1.8ms

Initially strain and curvature

t=3.6ms t=5.4ms

Later strain and curvature

are negatively correlated,
Strong vortex, no hydro. instab.

are positively correlated —
Vortex gone, hydro. instabil.




Not all turbulent eddy pairs do the same thing

e i
f

Eddy pair at bottom Stronger eddy pair Strong eddy pair

create large wrinkle, at bottom create creates no wrinkle

then are destroyed only small wrinkle but turns flame 90°
PACE - - MichiganEngineering

Propulsion and Combustion Engineering Laboratory ”%



Cinema-PlV identifies events dominated by Hydrodynamic Instability

t=0ms t=6.3ms t=12.6 ms
e vortex is a perturbation only - creates a flame wrinkle
e Regions of diverging and converging streaklines agree with theory
eexpected strain rate pattern of a hydro. instab. occurs
* Wrinkle grows into cusp, vortex is long gone
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Future work

e Statistical description of straining and wrinkling of flames

*Expand to 3D measurements using Orthogonal-Plane Cinema-Stereoscopic
PIV

cinema
stereoscopic
PIV (plane 1)

- . _image plane 2 (x-y)
image plane 1 (y-z)

cinema
PIV (plane 2)
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Results

Temporal evolution of the strain rate
e Strain-curvature correlation changes sign as wrinkle develops

e Magnitude of strain from hydrodynamic instabilities similar to that during
vortex interactions

* Strain rate exerted on flame not characterized by vorticity field
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Results

* Contours of S between 0 s (blue) and 700 s*(red)
e Flame is thick yellow line
e Flame acceleration appears as S
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Results

Interaction 1
* Strong vortical and strain-rate structures
* Large wrinkle and considerable surface area
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Results

Interaction 2
e Strong vortical structures, strain-rate structure quickly attenuates
e Smaller wrinkle and less surface area
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Results

Interaction 3
 Strong vortical structures, weak strain rate structure
e Little generation of flame surface area
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Results

Strain rate on the flame surface
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Results

Interaction 4
* Two successive pulses of extensive strain rate
 Create a longer flat flame segment
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Results

Interaction 5
* Strong positive vorticity
* Flame wrapped around with little strain
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Results

Strain rate and curvature on the flame surface
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Conclusions

* Dynamics of turbulence-flame interactions and hydrodynamic instability
measured using Cinema-Stereoscopic PIV

e Generation of flame surface area from each source observed

* Hydrodynamic instability can cause significant strain and generation of
flame surface in moderately turbulent flames

Vorticity field does not properly characterize strain rate on flame front
*New mechanism for turbulence-flame interaction proposed

Straining of flame by turbulent strain-rate structures

* Wrinkling of flame by turbulent vortical structures
e Interpretation confirmed from measurements
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Questions
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Future work

Vortical Structures
e Tube-like dissipative structures
e Tube-bundle and sheet-like inertial structures

TS

Strain-Rate Structures
*Sheet-, ribbon-, and blob-like dissipative structures
*Sheet/ribbon bundles and blob-like inertial structures

E Rk
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Results

Turbulence-Flame Interaction

. Turbulence strains flame
- and wraps flame surface
- into wrinkle

Vorticity attenuated, some
« flame generated vorticity
In products
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Outline

* Motivation

* Sources of strain rate

e Diagnostics and Experiment

* Results
e Strain due to turbulence and the hydrodynamic instability
* Roles of coherent turbulent structures

e Conclusions

e Future work
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Motivation

Strainrate a; = —n-(n-V)i+ V-4

e Describes generation of flame area from velocity gradients pulling and
pushing on the surface

Curvature stretch rate x. = (V - 1) Sg
* A wrinkled flame propagating normally to itself changes area

* Wrinkles initiated by velocity gradients

Velocity gradients associated with

* Turbulence
* Hydrodynamic instability
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Turbulence-Flame Interactions

Thought experiment:
e What are the effects of a purely vortical or strain-rate flow field
e Flame is an infinitely long freely propagating surface

Vorticity (no strain-rate) Strain-rate (no vorticity)
Solid body rotation Counter-flow geometry
Configure in canonical manner Laminar flamelet concepts
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